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In this paper, we focus on CMF signal processing and aim to resolve the problems of precision sharp-decline occurrence when 

using adaptive notch filters (ANFs) for tracking the signal frequency for a long time and phase difference calculation depending on 

frequency by the sliding Goertzel algorithm (SGA) or the recursive DTFT algorithm with negative frequency contribution. A novel 

method is proposed based on feedback corrected ANF and Hilbert transformation. We design an index to evaluate whether the 

ANF loses the signal frequency or not, according to the correlation between the output and input signals. If the signal frequency is 

lost, the ANF parameters will be adjusted duly. At the same time, singular value decomposition (SVD) algorithm is introduced to 

reduce noise. And then, phase difference between the two signals is detected through trigonometry and Hilbert transformation. 

With the frequency and phase difference obtained, time interval of the two signals is calculated. Accordingly, the mass flow rate is 

derived. Simulation and experimental results show that the proposed method always preserves a constant high precision of 

frequency tracking and a better performance of phase difference measurement compared with the SGA or the recursive DTFT 

algorithm with negative frequency contribution.  
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1.  INTRODUCTION 

URING THE last decades, interest in Coriolis mass 

flow meters (CMFs) has been increasing steadily. A 

reason is that CMFs directly measure the mass flow, 

whereas other instruments measure volumetric flow [1]. 

High precision, wide tolerance of measurable fluids and 

multi-parameter measurement also justify their fast growth 

and acceptance in industry. Mass flow rate is obtained in 

CMF by measuring the time interval, which is dependent on 

the frequency and the phase difference between two 

vibration signals detected by electromagnetic sensors. 

Therefore, the precise measurements of the signal frequency 

and the phase difference are the cores of CMF signal 

processing.  

Traditional analogue methods for CMF signal processing 

are of poor interference resistance and measured results are 

phase differences of resultant waves [2]. Various digital 

methods have been recently introduced into CMF so as to 

improve the precision [3]. Romano [4] introduced the 

discrete Fourier transform (DFT) into CMF signal 

processing for the first time in 1990. The signal frequency 

was calculated by DFT, and the phase difference was 

obtained by subtracting two DFT phases at the maximum 

spectral line. This method is of good resistance to harmonic 

interference but calls for an unfeasible technique of integral 

period sampling which limits its practicality. Freeman and 

Ashevillc [5] adopted digital phase-locked loop (PLL) to 

track the vibrating frequency of flow tubes. Denis [6] 

presented a method for CMF signal processing based on 

orthogonal demodulation. However, precision of the method 

depended on the performance of low-pass filters. 

A sliding Goertzel algorithm (SGA) was introduced to 

measure the phase difference between CMF signals. The 

SGA generates phase difference continuously, but there is a 

slow convergence rate and a numerical overflow. What is 

more, the SGA needs frequency when the phase difference is  

 

calculated. In [8], a method was proposed for CMF signal  

processing based on recursive DTFT algorithm with 

negative frequency contribution. When the Fourier 

coefficients are calculated, the method accelerates the 

convergence rate and improves the accuracy greatly. But the 

signal frequency is also needed. 

In [9], adaptive notch filter (ANF) was introduced to CMF 

signal frequency tracking. The ANF’s structural parameters 

were adjusted automatically according to signal 

characteristics and the vibrating frequency of flow tubes is 

generated continually. Thanks to the frequency tracking 

ability and good resistance to noise, the ANF has gained a 

lot of attention recently. A lattice ANF (LANF) was brought 

in CMF signal processing in [10]. [11] and [12] introduced a 

novel IIR-type ANF evolved from the Steiglitz-McBride 

method (SMM-ANF) [13] for CMF signal frequency 

tracking. The novel ANF has unbiased theory results, high 

precision and faster convergence rate compared with LANF. 

However, these ANFs including the novel ANF cannot 

supply constantly high-accuracy results. It has limited their 

applications in CMF signal processing. 

To improve the precision of CMFs, a new method is 

proposed in this paper based on feedback corrected ANF and 

Hilbert transformation [14]. The method is expected to 

supply constantly high-accuracy results and eliminate the 

dependence on frequency when calculating phase difference. 

This paper is organized into six sections. Section 2 

introduces the proposed method process. In Section 3, a 

feedback corrected ANF is proposed for frequency 

estimation. Section 4 presents a phase difference 

measurement method based on the Hilbert transformation. 

The proposed method for signal frequency estimation and 

phase difference measurement is validated by simulations 

and experiments in Section 5 and Section 6, respectively. 

Conclusions are drawn in the last section. 
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2.  METHOD PROCESS 

Process of the proposed method is expounded in Fig.1., 

from which  we can see that the frequency estimation and 

the  phase difference measurement are carried out in 

parallel, differing from the existing methods. On the one 

hand, SVD algorithm is firstly used to reduce the noise 

contained  in  CMF  signals.  And  then  phase  difference  is 

calculated by trigonometry operation between the noise-

reduced signals and those after the Hilbert transformation. 

On the other hand, signal frequency is estimated continually 

by the feedback corrected SMM-based ANF. Then, time 

interval of the two signals is figured out as the frequency 

and the phase difference is obtained. Accordingly, the mass 

flow rate is derived. 

 

 

 
 

Fig.1.  The signal processing flow chart. 

 
3.  FREQUENCY ESTIMATION BASED ON FEEDBACK 

CORRECTED ANF 

A strategy of feedback correction for ANF is proposed so 

as to improve the stability of its accuracy. According to the 

correlativity between the output and input signals, we design 

an index for real-time evaluation of the frequency estimation 

precision. If the index overruns its limit, ANF parameters 

will be adjusted adhering to the feedback. The SMM-ANF is 

taken as an examination for the feasibility of the proposed 

strategy. 

 

A.  The SMM-ANF 

Structure of the ANF based on Steiglitz-McBride method 

is shown in Fig.2, and its transfer function is given by: 
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Where
 
m  is the trap number, namely the sine wave number 

in ( )y n ; 

kρ  is pole contraction factor determining the trap 

bandwidth  

∆ is used to reduce the correlation between the noise 

in ( )y n and ( )y n − ∆ , 1∆ ≥ . 

ˆ ( )
k
nα is adaptive adjusted through the Newton-type 

algorithm, ˆ ˆ( ) 2cos ( )k kn nα ω= − , ˆ ( )k nω  is notch frequency 

corresponding to the sinusoidal frequency. 
A 2-order ANF with a single trap is used in our study as 

the CMF signals have only one expectant sinusoidal. 

The ANF bandwidth is often initialized with a big value 

and then decreases step by step so as to acquire the signal 

frequency.  
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At convergent stage, the pole contraction factor comes to 

one and the bandwidth approximately equals to zero (2). 

However, due to the ANF inherent structure, there is an 

incomplete convergence stage especially when the signal 

frequency is very low or very high (close to Nyquist 

frequency). At this stage, the ANF’s non-quadratic error 

rests on a local minimum, and then the signal frequency will 

be lost soon. 
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Fig.2.  Structure of the SMM-ANF 

 

B.  Assessment of frequency estimation accuracy  

The noise-reduced signal ˆ( )c n  shown in Fig.3. is obtained 

by the output ( )se n and the input ( )y n , expressed as 
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Thanks to the
 
independence of noise or ( )y n n− ∆ , the 

signal ˆ( )c n approximates to ( )c n  when the ANF works 

well. Otherwise, the signal ˆ( )c n approximates to ( )e n . 

Consequently, index h  is designed to evaluate the accuracy 

of the ANF. The index is calculated online in real time by 

the 0-order LMS, as follows: 
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where, hµ is the step size, and h is the solution of Wiener-

Hopf equation on the convergence condition.  
 

{ } { }2 ˆ( ) ( ) ( )h E y n E y n c n⋅ =                   (5) 

 

{ }( ) ( )E c n e n equals to zero as the signal ( )c n is unrelated to 

noise ( )e n . Then, the (5) can be written: 
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With { }( )E e n , { }2 ( )E e n and { }2 ( )E c n  equal to 

0 , 2

e
σ and 2 / 2A , respectively, the index h  can be derived 

as: 
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Fig.3.  Structure of the feedback modified SMM-ANF. 
 

There are two possible situations for the index h   with 

either good or bad performance of the ANF.  

� If the ANF works well, ˆ( )c n approximates to ( )c n  and 

then, the index
2 2 2/ ( 2 )eh A A σ= + . 

� If the ANF loses the signal frequency, there is no 

correlation between ˆ( )c n and ( )c n . Therefore, the expected 

value { }ˆ( ) ( )E c n c n can approximate to zero, and then, the 

index h  comes to zero consequently. 

 

C.  Feedback correction strategy 

A comparative parameter hT  is initialized with small value 

so as to judge whether the ANF loses the signal frequency or 

not. If h is greater than hT , we have nothing to do. 

Otherwise, the ANF’s parameters will be adjusted according 

to a random search method, rather than simply re-

initialization, which will lead to another convergence 

process. The correction strategy of the two key 

parametersλ and ρ of the SMM- ANF is given by 
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where λ∞ and ρ∞ denote the final value ofλ and ρ  , 

respectively, λδ and ρδ are the step size.  

4.  PHASE DIFFERENCE MEASUREMENT BASED ON HILBERT 

TRANSFORMATION 

A phase difference measurement method based on the 

Hilbert transformation is proposed in this section, expecting 

to eliminate the dependence on signal frequency. The 

singular value decomposition (SVD) algorithm is firstly 

used to reduce the noises in CMF signal. Then, the phase 

difference is calculated using the / 2π± phase-shift property 

of the Hilbert transformation. 

 

A.  SVD-based noise reduction 

There is a m -order orthogonal matrixU called the left 

singular value vector and a n -order orthogonal 

matrixV called the right singular value vector. The two 

matrices satisfy the equation that∑ = T
U AV .Where,  

A  is the Hank matrix composed of signal ( )x t , specified 

in (13)  
∑ is a ×M N  non-negative diagonal matrix 

with
1 2

0Nσ σ σ≥ ≥ ≥ ≥L on its diagonal positions. 

(1 )i i Nσ ≤ ≤
 
are the singular values representing the 

energy of matrixA . 

Noise-reduced signal can be constructed by reserving the 

fore r singular values which correspond to signal power and 
setting the others zero which define the noise components. 
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The rank r is the key for the best separation of the signal 

and noises. To choose an optimal rank r , singular entropy is 
defined as 

 

1
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E E
=
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where iE∆ is the singular entropy increment at the rank i ,  

computed by 
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1

/ ln /
m

i i i i
r

E rσ σ σ
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The singular entropy rE , which reflects the information 

contained in the signal, increases rapidly when the rank is 

low. The increase of rE drops off with the rise of rank, as 

the signal component contribution arrives at the maximum. 

Then, the rank i can guarantee a good denoising 

performance.  

The SVD-based noise reduction algorithm is simple in 

principle, easy to implement, but only useful to stationary 

signals. Therefore, a sliding rectangular window is adopted 

to cut the CMF signal into steady overlap segments. 
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B.  Phase difference calculation 

Hilbert transformation enjoys a / 2π± phase-shift 

property. Hereby, the phase difference function can be 

derived by the trigonometric operator between the CMF 

signal and its Hilbert transformation. 

CMF signals detected by electromagnetic sensors can be 

described by 
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where, ( )A n is the amplitude, 
1
( )nϕ and

2
( )nϕ are initial 

phases; ( )nω is the singular frequency, 2 / sf fω π= . 

Our goal is to evaluate the phase difference ( )nϕ∆ , 

1 2
( ) ( ) ( )n n nϕ ϕ ϕ∆ = − . The Hilbert transformations of the 

two CMF signals are given by 
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The phase difference ( )nϕ∆ can be derived: 
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Then, phase difference is measured at every sampling point 
in time region, despite the signal frequency [14]. 
 

5.  SIMULATION RESULTS 

Computer simulations and actual experiments have been 

done to evaluate the proposed method. Their results are 

presented in the following sections, respectively. 

A.  Simulated signals 

The CMF signal parameters vary from time to time due to 

the effect of fluid properties, flow pulsation, etc. A time-

varying signal model, in which the signal frequency, 

amplitude, and phase vary over time based on the random 

walk model, was presented in [15] so as to more closely 

describe the CMF signals. However, this model failed to 

describe the signals in special conditions such as pulsating 

flows. Hereby, the time-varying signal model based on 

random walk is amended, as follows: 
 

( ) ( )sin[ ( ) ( )] ( )ey n A n n n e nω φ σ= + + ⋅
 
     (15) 

 

( ) ( 1) ( )A A AA n A n e nδ σ= − + ⋅ ⋅            (16) 

 

( ) ( 1) ( )n n e nω ω ωω ω δ σ= − + ⋅ ⋅            (17) 

 

( ) ( 1) ( )n n e nφ φ φφ φ δ σ= − + ⋅ ⋅             (18) 

 
where, ( )e n , ( )Ae n , ( )e nω , and ( )e nφ are white noises, with 

no correlation between each other. eσ , Aσ , ωσ  and φσ are 

the walk amplifications, while Aδ , ωδ and φδ are walk factors 

following 0-1 distribution with the 

probabilities AP , Pω and Pϕ respectively. The probabilities are 

determined by the flow character and environment. 
 

Table 1.  Initializations of simulation parameters. 
 

Name Initial value Name Initial value 

Amplitude (0) 10A = mV Probabilities 0.5AP P Pω ϕ= = =  

Frequency 198f = Hz 
Sample 
frequency 

2000sf = Hz 

Step size 0.6eσ = ,
310

A
σ −= ,

610ωσ
−= ,

310ϕσ
−=  
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Fig.4.  Simulated signals. 



 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 1, 2014 

 

 45 

When the probabilities approximately equal to zero, the 

amended time-varying signal model degenerates to the 

sinusoidal with superposed white noise, describing the CMF 

signal under the circumstance of steady flow. When the 

probabilities come to one, it is the original time-varying 

model, describing the CMF signal under the circumstance of 

general fluctuant flow. The CMF signals under the 

circumstance of mutation flow can also be described by 

reducing the probabilities and increasing the walk 

amplification. 

Signals used in simulations are generated according to the 

time-varying signal model amended above. Parameters of 

the signal model are initialized as Table 1. Fig.4. shows the 

simulated signal, the frequency spectrum, the varying 

frequency and the varying phase difference. 
 

B.  Frequency estimation results 

The signal frequency is estimated by the feedback 

corrected SMM-ANF, while the lattice ANF and the original 

SMM-ANF are used as control experiments. The results are 

shown in Fig.5. It can be concluded from the results that the 

feedback corrected SMM-ANF converges faster than the 

LANF, slightly slower than the original SMM-ANF. The 

feedback corrected SMM-ANF has a higher precision 

compared with the LANF and the original SMM-ANF, 

especially when they work for a long time. The reason is 

that the feedback corrected SMM-ANF utilizes a designed 

index for observing the accuracy continuously and adjusts 

its own non-effective parameters duly. 
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Fig.5.  Performances of frequency tracking. 

 

To describe the precision advantage of the feedback 

corrected SMM-ANF in detail, Monte Carlo simulations 

have been done for 100 times independently and the mean 

square errors (MSEs) were calculated by 
 

21 ˆ
N

i=m

MSE f(i) - f(i)
N - m

 =  ∑                  (19) 

 

where f(i) and f̂(i) are the actual frequency and the 

estimated frequency, respectively. m is the beginning of the 

computing signal, while N is the end. The estimated 

frequency in the convergence process has not been 

compared in this research so as to guarantee the justice. 

m equals to 4,000, and N is 40,000, the length of the 

simulated signal.  

Fig.6.  shows the MSEs of frequency estimation. From 

Fig.6., it can be seen that the MSEs of the feedback 

corrected SMM-ANF are the steadiest and the lowest, 

compared with the LANF and the SMM-ANF. The MSEs 

mean of the feedback corrected SMM-ANF is 0.26 % of the 

LANF, 1.58 % of the original SMM-ANF. 
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Fig.6.  MSEs of frequency estimation. 

 

C.  Phase difference measurement results 

The properties of the proposed phase difference 

measurement method are analyzed with the SGA and the 

recursive DTFT algorithm with negative frequency 

contribution (the algorithm in [8] for short) as comparisons. 

The phase difference measurement results are presented in 

Fig.7. 
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Fig.7.  Performance of phase difference measurement. 

 

It can be seen from Fig.7. that the proposed method based 

on the Hilbert transformation has no convergence process 

and outputs the results from the beginning, while the SGA 

and the algorithm in [8] need a time to converge. The reason 

of this phenomenon is that the proposed method needs no 

iterations and calculates the phase difference through the 

trigonometry operator between the original CMF signals and 

those after their Hilbert transformations, very different from 

the SGA and the algorithm in [8] depending on DFT 

iterative calculation. Observing the local results of phase 

difference measurement, we can also see that the SGA has a 

time delay and cannot reflect the details. This is due to the 

requirement for a long sliding window in the SGA (400 

points in the experiment with 350 points overlapped). With 

the negative frequency contribution being considered, the 
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algorithm in [8] can detect a small phase difference change 

with a very short window (8 points in this experiment with 7 

points overlapped). The ability of dynamic phase difference 

measurement is also significantly improved. As for the 

proposed method based on the Hilbert transformation, the 

phase difference is directly calculated by the CMF signals 

and those after their Hilbert transformation, with no DFT. 

Accordingly, there are no subsections and no iteration 

operations in the proposed method. Therefore, the dynamic 

measuring performance is further improved. 

 

6.  EXPERIMENTAL RESULTS AND DISCUSSION 

A.  Experimental system 

As shown in Fig.8., the experimental system for CMF 

signal processing consists of two CMFs (F200S with a 

1700R transmitter, and TQ-884 with an ERE10 transmitter), 

a PLC used to change flow, a pump, a batch tank and a 

signal acquisition subsystem. The signal acquisition 

subsystem consists of two data acquisition devices (NI 9234 

and USB4711), an electric scale (FS3198-2), and a 

computer. 
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Pump
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FLOW
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Flow rate

CMF Signals

PLC

1700R ERE10

 
 

Fig.8.  Block of the experimental system. 

 

 

Flow rate is controlled by computer through the PLC and a 

control valve. CMF oscillation signals are acquired by the 4-

channel dynamic signal acquisition NI 9234. Instantaneous 

mass flow rate measured by the CMFs is collected by the 

USB4711. Mass flow measured by the scale is deemed as 

the actual value. The test of the proposed signal processing 

method is carried out by the computer. The oscillation 

signals used in the experiments come from the F200S CMF 

with its higher precision and stable performance compared 

with the TQ-884 CMF. 

 

B.  Results 

According to CMF’s principle, there is a linear 

relationship between the mass flow rate mq and the time 

interval t∆ , that is 

 

mq k t b= ⋅∆ +                                 (20) 

 

Where, the parameter b  is constant. The time interval t∆  

depends on the frequency and the phase difference. The 

coefficient k is decided by the CMF type, temperature, 

pressure and so on, but is fixed at the same situation. For the 

F200S CMF, we were informed of 19.3534k =  and 

1.0471b = from the manufacturers. 

Display values of F200S CMF are deemed as actual mass 

flow. The SGA and the algorithm in [8] are taken as 

comparisons. As we know, the SGA and the algorithm in [8] 

need signal frequency to conclude the phase difference. To 

guarantee the justice, frequency estimated by the feedback 

corrected SMM-ANF is used identically. Signals at nine 

kinds of steady flow are collected and processed. Mass flow 

is computed and shown in Table 2. It can be seen that the 

results concluded by the three methods agree with each 

other. The proposed method owns the highest precision, 

whose relative error is below 0.5 %. Then, we come to the 

conclusion that the proposed method is effective and 

practical.  

Table 2.  Experimental results. 

 
Mass flow (kg/min) Estimated frequency(Hz) SGA (kg/min) Algorithm in[8] (kg/min) The proposed method (kg/min) 

2.9700 198.4483 3.0275 2.9151 2.9368 

10.0400 198.3953 10.1910 10.1612 10.1364 

15.9800 198.3863 15.8070 15.8294 16.1212 
29.9100 198.3946 30.2341 30.2142 29.6848 

41.2800 198.4299 41.5911 41.0279 41.1027 

63.4500 198.3927 63.8731 63.7980 63.1618 
82.1300 198.3993 81.6201 82.5802 82.4763 

98.7600 198.4109 98.0135 99.2973 99.1905 
102.2800 198.4075 102.9942 101.5669 102.6956 

132.6100 198.4136 133.5964 133.5016 132.0320 

 

7.  CONCLUSION 

The core of CMF signal processing is the frequency 

estimation and the phase difference measurement. 

However, there is a dependence on frequency when the 

SGA or the algorithm in [8] is used to calculate the phase 

difference. It is a requirement that the signal frequency is 

timely tracked with a high-precision, due to its time-

varying character. A comprehensive novel method for 

CMF signal processing is proposed based on the feedback 

corrected SMM-ANF and the Hilbert transformation. 

Simulation and experimental results validate the proposed 

method and indicate some of its advantages, including: 
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� The proposed method carries out frequency tracking 

and phase difference measurement independently. We can 

obtain the frequency and the phase difference at the same 

time. Thus, the ability of real-time measurement is 

improved accordingly. 

� For frequency tracking, the presented feedback 

corrected SMM-ANF enjoys a constantly high accuracy, 

while others undergo a sharp decline in accuracy when 

working for a long time. The MSE’s mean of the 

feedback corrected SMM-ANF is 0.26 % of the LANF, 

1.58 % of the original SMM-ANF. What is more, the 

strategy of the feedback correction is also applicable for 

other ANFs. 

� For phase difference measurement, the presented 

method based on the Hilbert transformation calculates the 

results directly, with no iterative operation and no 

convergence stage, and performs better in accuracy, 

compared with the SGA and the algorithm in [8].  

To improve the precision and shorten the calculation 

time of the CMF signal processing, this paper suggests 

carrying out the frequency tracking and the phase 

difference measurement independently. The idea has 

preliminarily been validated by the methods proposed in 

Section 3 and Section 4, and further research is under 

discussion. 
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