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As a new type of displacement sensor, grating eddy current displacement sensor (GECDS) combines traditional eddy current 

sensors and grating structure in one. The GECDS performs a wide range displacement measurement without precision reduction. 

This paper proposes an analytical modeling approach for the GECDS. The solution model is established in the Cartesian 

coordinate system, and the solving domain is limited to finite extents by using the truncated region eigenfunction expansion 

method. Based on the second order vector potential, expressions for the electromagnetic field as well as coil impedance related to 

the displacement can be expressed in closed-form. Theoretical results are then confirmed by experiments, which prove the 

suitability and effectiveness of the analytical modeling approach. 
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1.  INTRODUCTION 

DDY CURRENT TESTING is a nondestructive 

technique working on the principle of electromagnetic 

induction, based on which the eddy current sensors are 

widely used in many industrial fields such as metal defect 

detection, vibration testing and displacement measurement, 

etc. Compared to other types of displacement sensors, eddy 

current displacement sensors have their own outstanding 

characteristics of water and dust proof, simple structure, 

high sensitivity and so on. Although the eddy current 

displacement sensors have those prominent features, 

measuring range is an unavoidable restraining factor for 

further expanding the application area. Displacement 

measured by traditional eddy current sensors is usually the 

liftoff of the coil relative to the reflective conductor, and the 

measuring range is mainly determined by the coil 

dimensions such as radius of circular coils or length and 

width of rectangular coils [1-3]. In practical applications, 

however, it is impossible to enlarge the measuring range by 

merely increasing the coil sizes. For this reason, it is very 

meaningful and necessary to develop new types of eddy 

current displacement sensors which can perform a wide 

range measurement without changing properties of the coil. 

From grating type displacement sensors such as grating 

optical sensors, grating magnetic sensors and grating 

capacitance sensors [4-6], the whole measuring range is 

composed of many measuring units, which are also named 

as measuring cycles. Therefore, the final displacement value 

is the summation of the absolute value in one measuring 

cycle and numbers of the cycles. In this way, wide 

measuring range estimation without any precision reduction 

can thus be carried out. This paper proposes a type of 

grating eddy current displacement sensor (GECDS) which 

combines the eddy current sensor with grating structure. In 

contrast to traditional eddy current displacement sensors, the 

GECDS consists of a series of reflective conductors which 

form a grating configuration type by arranging them 

equidistantly. While the coil moves along the orientation of 

these conductors, impedance of the testing coil will change 

periodically. Moreover, the testing coil integrates the 

functions of exciting with pickup, which simplifies the coil 

design and sensor structure.  

In order to obtain the output characteristics such as coil 

impedance variation of the GECDS, various approaches 

including analytical modeling methods or pure numeric 

methods are adopted for computational analysis of the eddy 

current problem. Among these methods, analytical modeling 

approaches can provide solutions in closed-form expressions 

since they are directly performed through solving the 

Maxwell equations. Therefore, analytical approaches have 

definite physical meanings, and this is extremely useful for 

researchers learning the essence of the eddy current 

phenomena. In addition, computing time of analytical 

approaches is much less than that of pure numeric methods. 

In the paper, basic measurement principles of the GECDS 

are firstly introduced, and then a complete structure of the 

GECDS is provided. Through establishing a theoretical 

model of the GECDS in the Cartesian coordinate system, 

closed-form expression for variation of coil impedance is 

obtained from the truncated region eigenfunction expansion 

(TREE) method. Finally, absolute positioning method of the 

GECDS is provided. 

 

2.  THE GECDS 

As shown in Fig.1., the GECDS consists of a testing coil 

and a number of reflective conductors. The coil is placed 

parallel to the conductors with a fixed distance d   and it can 

move transversely relative to the conductors. Width of each 

conductor along the moving direction is / 2λ , and these 
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conductors are arranged with a fixed distance λ from a 

grating structure. Thus, the whole measuring range is 

divided into many measuring cycles with the width of λ , 

and each measuring cycle is named as a measuring period. 

 

 
 

Fig.1.  Basic structure of the GECDS. 

 

While the coil moves transversely, coupling area between 

the coil and conductors will change, which makes 

impedance of the coil change accordingly. Taking one 

measuring period into account, when the testing coil is 

directly over the conductor (conductor 1 in Fig.1.), eddy 

current induced in conductors acting on the coil makes the 

inductance of the coil minimum. Inductance value reaches 

maximum while the coil is at the middle position between 

conductors 1 and 2 due to the weakest eddy current effects, 

and then it reaches minimum again when the coil is over the 

conductor 2. In a whole measuring period, variation of the 

coil inductance is thus a repetitive process of minimum to 

maximum and to minimum again. Therefore, wide range 

measurement is performed through measuring the absolute 

position of the coil in one measuring period and adding 

numbers of the periods. 

In practical use, however, it is difficult to accurately obtain 

absolute position only using one coil. In order to solve this 

problem, a differential structure with multicoils is adopted, 

which is shown in Fig.2. Width of each coil along the 

moving direction is the same as that of one conductor, which 

is / 2λ . Coil 1 and coil 2 are / 2λ  apart form a set of 

differential coils. In a similar way, coil 3 and coil 4 form 

another pair of differential coils, and these two sets of 

differential coils are / 4λ  apart from each other. Moreover, 

coils 1, 2, 3 and 4 are all composed of six subcoils with the 

same sizes, respectively. These subcoils are connected in 

series from end to end with a fixed interval which equals to 

one measuring period λ . With the layout strategy of these 

subcoils, self-inductance of the coil can be increased with 

fewer layers while it is fabricated by the printed circuit 

board (PCB) techniques, which is cost-effective of 

fabrication. The differential structure can not only increase 

the resolution but also improve the capacity of resisting 

disturbance [7]. 

During the measurement, the two output signals of coil 1 

and 2 form a differential signal by subtraction, and another 

differential signal is formed by coils 3 and 4 using the same 

method. Absolute displacement value can thus be calculated 

from these two differential signals. Absolute positioning 

method will be introduced in the following sections after the 

coil inductance variation against displacement from the 

analytical modeling approach is derived. 

 

 

 
Fig.2.  Layout of the GECDS. 

 
3.  ANALYTICAL MODELING FOR THE GECDS IN THE 

CARTESIAN COORDINATE SYSTEM 

In order to obtain the change law of the coil impedance 

related to the displacement, take coil 1 as an illustration. An 

original solving model for one measuring period of the 

GECDS is shown in Fig.3. The six subcoils connected in 

series in Fig.2. are equivalent to one single coil, and it can 

be treated as a rectangular coil with rectangular cross 

section. 

 

 
 

Fig.3.  Solving model of the GECDS within one measuring period. 

 
While the coil is moving within a measuring period, 

suppose firstly that the coil is only affected by two 

conductors, and the mutual inductance between these two 

conductors can be disregarded due to the spacing distance 

between them. Secondly, variation of the coil impedance is 

worked out when the conductor 1 alone is acting on the coil. 

For the conductor 2, since it is actually an inverse symmetry 

process relative to conductor 1, variation of the coil 

impedance can then be determined using the same method. 

Finally, a complete coil impedance variation process under 
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the coaction of these two conductors within a measuring 

period is thus obtained through the superposition method. 

Moreover, each conductor in the model is a conductive plate 

with right-angle wedge, and it is regarded as a conductive 

quarter space which is different from the conductive half 

space in traditional models [3, 8]. 

 

A.  Scalar decomposition using second order vector 

potential 

The electromagnetic (EM) field interrelated to the GECDS 

can be expressed in terms of the second order vector 

potential (SOVP) in the Cartesian coordinate system [9]. 

Using the scalar decomposition, the magnetic flux density is 

 

= ∇×∇×B W                             (1) 

 

x a x b
W W= + ×W e e    ,                      (2) 

 

where
x

e denotes the unit vector 

of x direction,
a

W and
b

W are the transverse electric (TE) and 

transverse magnetic (TM) scalar potentials, respectively. 

These two scalar potentials satisfy the Laplace or Helmholtz 

equations corresponding to the nonconductive and 

conductive regions 

 

2 2a a

b b

W W
k

W W

   
∇ =   

   
                          (3) 

 

For the conductive region there is 2

0 r
k jωµ µ σ= , in which 

2 fω π=  is the angular frequency corresponding to the 

excitation frequency f of the coil. 
0
µ ,

r
µ and σ are the 

vacuum permeability, relative permeability and electrical 

conductivity of the conductor, respectively. 

Components of the magnetic flux density in the Cartesian 

coordinate system from (2) are 

 
2

2

2

a

x a

W
B k W

x

∂
= −
∂

                         (4) 

 

2

2a b

y

W W
B k

x y z

∂ ∂
= +
∂ ∂ ∂

                      (5) 

2

2a b

z

W W
B k

x z y

∂ ∂
= −
∂ ∂ ∂

                       (6) 

Especially for the nonconductive region where 2 0k = , the 

magnetic flux density can be expressed as the gradient of the 

TE potential 

( )a
W

x

∂
= ∇

∂
B                             (7) 

 

B.  The TREE method and Symmetric solutions 

As mentioned earlier, the whole process of the coil 

impedance variation within a measuring period is a 

combined result of which conductor 1 and 2 is acting alone 

on the coil, respectively. The initial problem can be 

simplified to such a solving model only with one conductor 

(conductor 1 in Fig.3.), from which variation of the coil 

impedance is calculated. As for conductor 2, coil impedance 
variation is the inverse symmetric process from that of the 

conductor 1. 

For the solving model with one conductor, the TREE 

method means the solving domain is limited to finite extents 

by imposing artificial boundaries in both x  and y directions. 

These boundaries can be set as a magnetic insulator (normal 

component of the magnetic flux density is zero) or an 

electric insulator (tangential component of the magnetic 

field is zero). Furthermore, from the symmetric 

consideration, only half of the original truncated domain is 

needed to be considered through adding an auxiliary 

boundary at 0x = . The initial problem is then decomposed 

to even or odd solution [10]. For even solution, the 

boundary at 0x = is a magnetic insulator, which indicates 

current flow in the coil and its image coil mirrored at 0x ≤ is 

in the same direction. While for odd solution, current flow 

in the two coils is in the opposite directions, which makes 

the boundary at 0x = an electric insulator. The final solution 

is the average summation of the two solutions. Fig.4. shows 

the simplified solving model within finite extents, and the 

boundary conditions are as follows: boundaries 

at
x

x a= and
y

y b= are the magnetic insulator, and boundary 

at 0y =  is the electric insulator. 

 

 
 

Fig.4.  Solving model in a truncated domain. 
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C.  Even solution 

In the nonconductive region 0, the magnetic flux density is 

only related to the gradient of the TE potential from (7), and 

it satisfies the Laplace equation. This potential is expressed 

as a superposition of the source coil and reaction of the eddy 

current induced within the conductor 

 
(0) ( ) ( )s ec

a a aW W W

x x x

∂ ∂ ∂
= +

∂ ∂ ∂
                  (8) 

 

From the boundary conditions for even solution, these two 

potentials are written 

 
( )

( )

1 1

sin( )cos( ) exp( )
s

sa

n m mn mn

n m

W
v y u x C z

x
γ

∞ ∞

= =

∂
=

∂ ∑∑       (9) 

 
( )

( )

1 1

sin( ) cos( ) exp( )
ec

eca

n m mn mn

n m

W
v y u x D z

x
γ

∞ ∞

= =

∂
= −

∂ ∑∑ ,   (10) 

 

where /
m x

u m aπ= , (2 1) / (2 )
n y

v n bπ= − and 2 2 2

mn m n
u vγ = +

The source coefficient (s)

mn
C is related to the coil properties 

such as shape, size and excitation current, and the 

coefficient ( )ec

mn
D is the expansion coefficient needed to be 

solved in the nonconductive region 0. 

The source coefficient (s)

mn
C is determined by the excitation 

current I  and geometric parameters shown in Fig.4. 

According to the superposition method [3, 11], the source 

coefficient of the rectangular coil with rectangular cross 

section is 

 

( ) 0

2 1

1 2

8
sin( )cos( )

(z )

exp( ) exp( )

s

mn n d m d

x y

mn mn R

mn m n

NI
C v y u x

a b w z

z z

u v

µ

γ γ
γ

=
−

− − − Γ
×

   ,    (11) 

 

where N denotes number of the coil turns,
d

x  is the 

displacement value, / 2
d y

y b= ensures the coil far from the 

two boundaries in y direction, and 

1 1
0

sin[ ( )]sin[ ( )]
w

R m n
u x w v y w dwΓ = + +∫  . 

For the region 1( 0z ≤ ) which includes the conductive and 

air region, the TE and TM potentials are written 

 
(1)

1 1

( )

1 1

( )

sin( )sin( )

exp( ) 0

sin( )sin[ ( )]

exp( )

a

n m

n m

a con

mn mn c

n m x

n m

a air

mn mn c x

W

v y q x

C z x x

v y p a x

C z x x a

λ

λ

∞ ∞

= =

∞ ∞

= =




 × ≤ ≤

= 
 −



× ≤ ≤

∑∑

∑∑

      (12) 

where 2 2 2 2 2 2

mn m n m n
q v k p vλ = + + = + , and the expansion 

coefficients ( )a con

mn
C and ( )a air

mn
C are the conductive and air 

subregions in region 1, respectively. 

For the TM potential
b

W in region 1, it is only related 

within the conductive region. Notice that the normal 

component of the current density is zero at the conductor-air 

interface
c

x x= , the TM potential is expressed 

 

(1) ( )

1 1

cos( ) cos( ) exp( )
b

b n m mn mn

n m

W v y r x C s z
∞ ∞

= =

=∑∑ ,      (13) 

 

where (2 1) / (2 )
m c

r m xπ= − , 2 2 2 2

mn m n
s r v k= + + , and ( )b

mn
C is 

the expansion coefficient which is needed to be solved. 

From (12), the continuity conditions at the interface
c

x x=  

are written 

 
( ) ( )sin( ) sin[ ( )]a con a air

m c mn m x c mn
q x C p a x C= −          (14) 

 
( ) ( )cos( ) cos[ ( )]a con a air

m m c mn m m x c mn
q q x C p p a x C= − −    (15) 

 

An auxiliary coefficient
m

a is used subsequently to express 

the relationship between the two expansion 

coefficients ( )a con

mn
C  and ( )a air

mn
C in (12), which 

is ( ) ( )a con a air

m mn mn
a C C=  , and it is written from (14) and (15) 

 

sin( ) cos( )

sin[ ( )] cos[ ( )]

m c m m c

m

m x c m m x c

q x q q x
a

p a x p p a x
= = −

− −
      (16) 

 

The two eigenvalues
m

p and
m

q can thus be calculated from 

(16) with
2 2

m m
q p k= −   

 

tan( ) tan[ ( )] 0
m m c m m x c

p q x q p a x+ − =          (17) 

 

In the following steps, a numerical scheme is adopted to 

calculate these two eigenvalues. Two limiting cases are 

needed to be considered with respect to the width of the 

conductor
c

x . One is the incrementing case, and another is 

the decrementing case. For the incrementing case, suppose 

firstly that 0
c

x =  , and the eigenvalue
m m

p u= which 

indicates that the conductor vanished and this is the same 

condition for finding
m

u . Then, width of the conductor is 

increased step by step in a small increment
c

x∆ until it 

reaches the true value
c

x . In each step, the Newton-Raphson 

iteration algorithm is used to compute the eigenvalues, 

which is 

 

1 ( )

( )

i

i i m

m m i

m

m

f p
p p

df p

dp

+ = −   ,                (18) 
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where ( ) tan( ) tan[ ( )]
m m m c m m x c

f p p q x q p a x= + − , and i is 

the iteration number. For a particular value of
c

x , the 

eigenvalue can be obtained while 1i

m
p + differs from i

m
p by a 

very small amount. Next, the eigenvalue for a new value 

of
c c

x x+ ∆ can be computed from the previous step for
c

x . 

Therefore, after the value reaches the true width of
c

x , it 

provides one set of eigenvalues. 

For the decrementing case, the iteration is started 

at
c x

x a= , and the starting eigenvalue changes 

to
2 2

m m
p u k= + . In this case, 

c
x is decreased step by step 

until it reaches the true value
c

x again, and in each 

decrementing step the Newton-Raphson iteration algorithm 

is also used. Like the incrementing case, one can obtain 

another set of eigenvalues. Consequently, the final set of 

eigenvalues is therefore obtained by merging these two sets 

of eigenvalues computed from the incrementing and 

decrementing case. The eigenvalues used for computations 

are the ones from a specific index number m . 

After obtaining the expression of TE and TM potentials in 

each region, the next step is to work out the unknown 

expansion coefficients from the continuity conditions of the 

magnetic field. Substituting (8) into (4) to (6), the three 

components of the magnetic flux density in region 0 are 
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Components of the magnetic flux density in region 1 are 
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From the expressions of the EM field listed above, they all 

satisfy the continuity conditions at the plane 0z = . It can be 

written in the matrix form through the use of orthogonality 

for trigonometric functions 
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C are the column 

vectors, and u ,
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γ ,
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s are the diagonal matrices 

corresponding to 
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u ,
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m

s . The other three 

matrices
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M are square matrices 
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where 1,2,3i m= ⋅⋅ ⋅ , 1, 2,3j m= ⋅⋅ ⋅ , and they are 

determined by the summation terms of the series. 
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Therefore, all the expansion coefficients can be derived 

through solving the three equations (25) to (27) with the 

known source coefficient ( )s

mn
C . For instance, the 

coefficient ( )ec

mn
D  which is used for calculating the coil 

impedance is 

 

( ) ( ) 1 ( )2ec s a con

n n s n

x
a

−= − +D C u M C              (31) 

 

D.  Odd solution 

For odd solution, the only difference is the additional 

boundary condition at 0x = , which changes into the electric 

insulator. With other boundary conditions unchanged, and 

notice that the derivation steps are the same as those of the 

even solution, expressions of the TE and TM potentials are 

as follows: 

In region 0: 
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In region 1, the TE and TM potentials are written 
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cos( )sin( ) exp( )
b

b n m mn mn

n m

W v y r x C s z
∞ ∞

= =

=∑∑  ,      (35) 

 

where 2 2 2 2 2 2

mn m n m n
q v k p vλ = + + = +  , 

/
m c

r m xπ= , 2 2 2 2

mn m n
s r v k= + + , ( )a con

mn
C and ( )b

mn
C are the 

expansion coefficients.  

The auxiliary coefficient
m

a  in this case is 

cos( ) sin( )

sin[ ( )] cos[ ( )]

m c m m c

m

m x c m m x c

q x q q x
a

p a x p p a x
= =

− −
      (36) 

 
The eigenvalues can be obtained using the same method 

described in the even solution from 

 

tan( ) cot[ ( )] 0
m m c m m x c

q q x p p a x− − =           (37) 

 
Derivations of the unknown coefficients in odd solution 

are in the same form as (25) to (27). Therefore, through 

changing the eigenfunctions and eigenvalues corresponding 

to the boundary conditions for the odd solution and 

substituting them into those equations listed above, 

expansion coefficients for odd solution are worked out 

following the same steps provided in the even solution. 

 
4.  COMPUTATIONAL RESULTS AND ABSOLUTE POSITIONING 

METHOD  

A.  Variation of the coil inductance 

Since the eddy current effects induced within the 

conductors reacting on the coil are different at various coil 

positions within a measuring period, impedance of the coil 

will keep changing while the coil moves transversely. From 

Fig.2., coil 1 which consists of six subcoils connected in 

series is deemed to be a single coil in Fig.3. and Fig.4. 

Therefore, the final calculation result for this equivalent coil 

equals to the summation results of the six subcoils.  

Expression for the variations of the coil impedance is 

calculated from [12] 

 

( ) (0) (0) ( )

2

0

1
( )

s s

z
S

Z dS
Iµ

∆ = ⋅ × − ×∫∫ e E H E H   ,    (38) 

 
where S denotes a closed surface at z = 0 closed within the 

truncated domain in x and
y

 directions, and it extends to the 

region at z<0. E
(0)

 and H
(0)

 are the electric and magnetic 

field not including the conductor, while E
(s)

 and H(s) are the 

field including the conductor. The expression (38) can be 

written in terms of the TE potential in the nonconductive 

region 

 
( ) ( ) ( ) ( )

02 0 0
0

( )
y x

ec s s ec
b a

a a a a

z

W W W Wj
Z dxdy

x x z x x zI

ω
µ =

∂ ∂ ∂ ∂
∆ = − −

∂ ∂ ∂ ∂ ∂ ∂∫ ∫   

(39) 

 
From the Parseval’s theorem and expressions of the Wa

(s)
 

and Wa
(ec)

 for even and odd solutions, the final expression 

for the impedance change is 

 

( ) ( )

2
1 102

x y s ec

mn mn mn

n m

j a b
Z C D

I

ω
γ

µ

∞ ∞

= =

∆ = − ∑∑              (40) 

 

This is a general expression and it is suited for both the 

even and odd solutions. The coil impedance is only related 



 

MEASUREMENT SCIENCE REVIEW, Volume 15, No. 1, 2015 

 

 50 

to the transverse displacement value
d

x while keeping other 

parameters unchanged. 

For the TREE method, as mentioned earlier, artificial 

boundaries
x

a and
y

b should be imposed far from the coil and 

conductor. In this paper, the truncated domain is set 

as
x y c

a b nx= = with 20n =  and the summation terms of the 

series is 2n , which ensures accuracy of the calculation 

results. Sizes of the subcoil in Fig.3. and testing parameters 

are listed in Table 1. 

 
Table 1.  Sizes of the subcoil and testing parameters. 

 

Coil sizes  Testing parameters 

1x   0.5mm f  3.2MHz 

1y  0.5mm σ  14.6MS/m 

w  0.75mm 
rµ  1 

1z  0.5mm 
cx  1.25mm 

2z  1.3mm λ  5mm 

N  20   

 

Fig.5. shows the change tendency of the coil inductance 

within one measuring period, from which one can find the 

change law of the coil inductance related to the 

displacement. 

 

 
Fig.5.  Variation curve of the coil inductance within  

a measuring period. 

 

For the purpose of fast and accurate measuring of the coil 

impedance against the displacement, an indirect approach 

using the LC oscillator circuit is adopted. Output frequency 

signal will change due to the coil inductance variation. The 

frequency signal is measured by the synchronous counters 

built in the micro control unit. Relationship between the 

frequency f and the coil inductance L  is 

 

1/ (2 )f LCπ=     ,                 (41) 

 

where
0

L L L= + ∆ is the instantaneous inductance of the 

coil, which includes the self-inductance
0

L  and inductance 

variation L∆ of the coil. Total self-inductance of the six 

subcoils measured by a digital bridge device 

is
0

3.81 HL µ= . The equivalent capacitance of the oscillator 

is 650 pFC = . 

For the verification of the calculated results, the calculated 

results are converted to the frequency signal from (41). 

Theoretical and experimental results of the frequency 

variation curves within two measuring periods are shown in 

Fig.6. It can be seen from the figure that the two curves are 

fitted well, and they both have the same variation period and 

rules. 

 
Fig.6. The experimental and calculated results of the frequency. 

 

B.  Absolute displacement in one measuring period 

As mentioned in the previous section, two differential 

signals should be used for absolute positioning in one 

measuring period. Inductance variation of coils 2, 3 and 4 

can be derived from the computing results of coil 1 through 

shifting it by / 2λ , / 4λ and 3 / 4λ , respectively. The two 

differential signals
12

L and
34

L are expressed as 

 

12 2 1
L L L= ∆ − ∆                          (42) 

 

34 4 3
L L L= ∆ −∆                          (43) 

 

Results of coil inductance in the two measuring periods 

are shown in Fig.7. 

 

 
Fig.7.  Variation of the two differential inductance curves. 
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It can be seen from the figure that these two differential 

curves approach the cosine and sinusoidal curve, 

respectively, which can be roughly expressed 

 

12
cos(2 / )

d
L A xπ λ=                     (44) 

 

34
sin(2 / )

d
L A xπ λ=     ,               (45) 

 

where A is the amplitude of the signal, and
d

x  is the 

displacement value in Fig.3. Then the phase angle is 

calculated from 

 

34 12
arctan( / )L Lϕ =                     (46) 

 

Linear variation of the phase angle related to the 

displacement within two measuring periods is shown in 

Fig.8. according to (46). 

 
Fig.8.  Linear variation curve between phase angle and 

displacement. 

 

The absolute displacement value
d

x can thus be obtained 

from (46) 

 

/ 2
d

x λϕ π=                          (47) 

 

Assuming that the number of the measuring periods K has 

been acquired, the total displacement D equals to
d

K xλ + . 

 

5.  CONCLUSION 

The GECDS combining the grating structure and accuracy 

of traditional eddy current sensors performs the function of 

wide range measurement without precision reduction, which 

has broad perspectives in application. The analytical 

modeling approach proposed in this manuscript analyzes the 

coil impedance variation of the GECDS. Therefore, one can 

investigate effects of the sensor parameters, such as axial 

gap between coils and reflective conductors, excitation 

frequency and the coil dimensions from the angle of this 

theoretical mode. Both these parameters determine the 

performance of the GECDS including sensitivity, 

nonlinearity error and so on. Therefore, an effective multi-

parameter optimization method based on this model is 

imperative for economic and efficient production, and this is 

one of the research goals of the future works. 
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