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The scalp electroencephalography (EEG) signal is an important clinical tool for the diagnosis of several brain disorders. The 

objective of the presented work is to analyze the feasibility of the spectral features extracted from the scalp EEG signals in 

detecting brain tumors. A set of 16 candidate features from frequency domain is considered. The significance on the mean values 

of these features between 100 brain tumor patients and 102 normal subjects is statistically evaluated. Nine of the candidate 

features significantly discriminate the brain tumor case from the normal one. The results encourage the use of (quantitative) scalp 

EEG for the diagnosis of brain tumors. 
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1.  INTRODUCTION 

N SPITE of several advancements in the neuroimaging 

techniques, there is still a considerable pre-diagnostic 

symptomatic interval (PSI) (the time interval from the 

onset of first symptom to the diagnosis) in the diagnosis of 

brain tumors [1]-[5]. The PSI ranges from few days to over 

a year in around 25 % of cases. This is due to the following 

facts: (i) the misleading general symptoms, (ii) the 

unavailability of neuroimaging facilities, and (iii) the risk 

and cost involved in the neuroimaging techniques. The first-

level symptoms such as headache (in around 85 % cases), 

strange feeling in the head (in around 56 % cases), and 

nausea/vomiting (in around 43 % cases) are more general 

and common to several diseases. The neuroimaging 

facilities are not available in all clinics, especially in those 

situated in the rural areas of developing countries. The 

neuroimaging techniques such as the magnetic resonance 

imaging (MRI) and the computed tomography (CT) do 

involve a complicated procedure with certain risk of safety 

hazards, e.g., static electromagnetic field and radiation, and 

discomfort to the patients, e.g., fear and dizziness, which 

restricts the physicians from using them willingly [6]. 

However, it is necessary to reduce the PSI in order to 

increase the survival rate of the patients [3], [4]. One 

possible alternative is the scalp electroencephalogram 

(EEG) [4]. 

Since the introduction of the term, ‘delta waves’ and its 

association with the brain tumors of cerebral hemisphere by 

Walter [7], many researchers [8]-[14], though the 

neuroimaging techniques alone can produce confirmative 

results, have qualitatively investigated the use of scalp EEG 

for the diagnosis of brain tumors. However, only few 

researchers [15]-[20] have conducted some quantitative 

investigations on this issue, such as automated classification 

or localization using the quantitative (scalp) EEG (qEEG) 

features with encouraging results. 

The recording of scalp EEG is non-invasive, free of risky 

radiations or drugs and cheaper in terms of equipment cost, 

computational complexity in producing reliable results, 

storage requirement and portability [6]. The main 

difficulties in the EEG recording process are the 

requirement of the patient’s cooperation and the removal of 

artifacts. 
The EEG abnormalities in the presence of a brain tumor 

include [11], [21] (i) the polymorphic delta activity (PDA) 
(especially localized, persistent and non-reactive), (ii) the 
intermittent rhythmic delta activity (IRDA) (especially 
frontal), (iii) slowing of background rhythm (especially 
alpha), (iv) complete or incomplete loss of electrical activity 
in and around the tumor location, (v) disturbance of alpha 
rhythm, (vi) amplitude asymmetry in the beta rhythm, and 
(vii) epileptiform discharges. Generally, the presence of a 
brain tumor causes the background (normal) EEG rhythm to 
slow down. The EEG abnormalities can be either focal or 
diffused [4], [10]. The focal abnormalities can further be 
either ipsilateral or contralateral or bilateral. The 
abnormalities are dependent on the type, location, rate of 
growth of the tumor and time. 

In this paper, the results of the investigations on the ability 
of several spectral features in discriminating the 
multichannel EEG signals of a brain tumor patient from 
those of a normal subject are presented. 

 

2.  MATERIALS AND METHODS 

Data were collected from the Institute of Neurology, 
Madras Medical College (MMC), Chennai, Tamil Nadu, 
India, after getting approval from the Ethical Committee of 
the Institute. The Department of Neurosurgery of the 
Institute selected the patients with clinical evidence of brain 
tumor and the Department of Neurology of the Institute 
recorded the scalp EEG from them after completing the 
required formalities. 

The method consists of selecting a set of relevant 
candidate features from the frequency domain followed by 
the extraction of these features from the EEG records of the 
normal and brain tumor cases and finally statistically 
analyzing their ability in discriminating the cases. 
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A.  Data set 

Nineteen-channel, common reference montage (referenced 

to linked earlobes) scalp EEG records, in the standard 10-20 

electrode system, from 100 brain tumor patients (subjects 

with clinical evidence of brain tumor) at rest with eyes 

closed, were obtained at a sampling rate of 256 Hz. Similar 

records were obtained from 102 normal subjects (subjects 

without any clinical evidence of brain tumors). 

 

B.  Preprocessing 

The EEG records were obtained with minimal artifacts 

through proper recording conditions laid by the experts from 

the Department of Neurology of MMC. Certain artifacts 

such as eye movements, eye rolling and essential tremors, 

which, generally, fall in the useful bandwidth of cerebral 

EEG, were removed offline by a recently proposed 

combination of independent component analysis (ICA) 

technique and discrete wavelet transform known as the 

modified wavelet ICA. All EEG records were then 

bandpass-filtered to 1-40 Hz as the signals below 1 Hz and 

above 40 Hz in EEG are generally unreliable due to low 

signal-to-noise ratio [22], [23]. The records were re-

referenced to common average reference to approximate a 

reference-free recording condition [23], to minimize the 

artifacts [24], [25], to make channel records independent 

i.e., to make channel records to represent local activities 

[24], [26], and to provide high reliability over quantitative 

EEG features [27]. Finally a 10-minute, artifact-free epoch 

from each EEG record was retained for the analysis. 

 

C.  Selection of features 

A set of ‘relevant’ features was manually selected based 

on some heuristic assessment over their relevance and the 

computational complexity involved in the estimation of the 

features. The heuristic assessment over the relevance is 

based on the facts observed by the physicians on the 

characteristics of the scalp EEG in relevance to the brain 

tumors such as the gain in low frequency rhythms, the loss 

in high frequency rhythms, the perturbations in normal 

background rhythms, the discriminative characteristic waves 

of EEG that are indicative of brain tumors, e.g., PDA and 

the changes in the EEG dynamical structure, e.g., the 

waveform complexity. Since only few literature sources on 

the quantitative analysis of the issue are available, relatively 

‘equivalent’ literature sources on the EEG and other time 

series analyses were considered to arrive at some heuristic 

assessments on the selection of features. The heuristically 

selected features have been briefly described below. 

1) Power Ratio Index (PRI) 

The PRI is the ratio of power in one band to that in 

another. Given a discrete-time signal, x(n), n=0, 1, 2, …, 

N−1 of length, N, the PRI is calculated as follows. The 

power spectrum, Px(f) of the signal, x(n) is estimated using 

the Welch method of averaged periodograms [28] and then 

the PRI is defined as 
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where [fi1,fi2] and [fj1,fj2], i≠j are the edges of bands 

considered. In this study the ratio of power in the delta-theta 

band (1-8 Hz) to that in the alpha-beta band (8-30 Hz) as an 

indicative of gain (loss) in low (high) frequency power [19] 

is considered. 

2) Relative Intensity Ratio (RIR) 

The RIR is the ratio of power in a band to the total power 

i.e., a measure of relative power in an EEG band. Thus, the 

RIR is defined as [29] 
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where [fi1,fi2] are the edges of bands considered. All the five 

conventional EEG bands are considered in this study i.e., 

[1,4] Hz for the delta (i=d), [4,8] Hz for theta (i=t), [8,13] 

Hz for alpha (i=a), [13,30] Hz for beta (i=b) and [30,40] Hz 

for gamma (i=g) bands, respectively i.e., RIRd represents 

RIR of delta band and so on. 

3) Maximum-to-Mean Power Ratio (mmrPS) 

The mmrPS is ratio of the maximum power in a band to 

the mean of the total power. The mmrPS measures the 

relative strength and stretch in an EEG band. Thus, the 

mmrPS can be expressed as 
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where [fi1,fi2] are the edges of bands considered. In this study 

all the five bands, as in the case of RIR, are considered. 

4) Peak BiSpectrum (pBS) 

The pBS is the maximal bispectral value. Given a discrete-

time signal, x(n), n=0, 1, 2, …, N−1, its bispectrum, Bx(f1,f2) 

is estimated using the conventional (non-parametric) direct 

method [30], [31] and the pBS is defined as 

 

( ){ }
1 1 2 2

1 2
,

max ,
i i

x
f f f f

pBS B f f
≤ ≤

=                     (4) 

 

where [fi1,fi2] are the edges of bands considered. The 

maximal bispectral values in the delta-theta (1-8 Hz) band 

and in the alpha (8-13 Hz) band, namely the Slow Peak 

Bispectrum (pBSslw), and the Fast Peak Bispectrum (pBSfst) 

are considered in this study. 

5) Peak BiCoherence (pBC) 

The bicoherence, bx(f1,f2) is estimated by normalizing the 

bispectrum, Bx(f1,f2) using the Kim-Powers [32] 

normalization factor and the pBC can be expressed as 
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where [fi1,fi2] are the edges of bands considered. The 

maximal bicoherence values in the same bands as for the 

pBS are considered. They are labeled as the Slow Peak 

BiCoherence (pBCslw), and the Fast Peak BiCoherence 

(pBCfst), respectively. Prior to selecting the peak values, the 

bicoherence values below the 95 % statistically significant 

zero-bicoherence level [33] are zeroed out. 
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6) Spectral Entropy (SE) 

The SE is a measure of spectral regularity and defined as 

[34] 

 

( ) ( ) ( )1 ln lnf x x

f

SE N p f p f= −      ∑           (6) 

 

where px(f) is the probability density function in the 

frequency domain, estimated as 

 

( ) ( ) ( )x x x

f
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and Nf is the number of frequency samples normalizing SE 

to [0,1]. The SE measures the complexity of the underlying 

processes that generate the signal. The larger is the value of 

SE, the more irregular is the spectrum of the signal and 

hence more complex is the generating system and vice 

versa. 

 
D.  Extraction of features 

To prevent the effect of scaling on the values of the 

extracted features [35], each EEG record was first 

normalized. 

All the features described above require the EEG signal to 

be stationary [36]. Since the EEG signals are non-stationary, 

they are often analyzed in segments in order to ensure the 

stationarity using a criterion of weak stationarity, which 

requires that the statistical parameters up to certain order 

remain (practically) constant over the entire period of the 

segment [37]. The most popularly used weak stationarity is 

the second-order stationarity which requires the second-

order statistics, mean and standard deviation, to remain 

constant at some prescribed significant level (e.g., 5 %) with 

the autocorrelation depending only on the time difference 

[38]. The test for detecting the stationary segment length 

was carried out as described in [37]. The dependency of the 

autocorrelation of each segment on time difference alone 

was checked as described in [35]. Segments of lengths 2 s 

and 4 s were chosen as stationary segments for this study. 

The 16 features described above were then extracted from 

every 2 s and 4 s segments of each channel record of 10 min 

duration. The value of each feature for each channel was 

estimated by averaging over all these segments and that for 

each subject, by averaging over all channels. 

 
E.  Statistical evaluation of features 

The ability of the qEEG features (i.e., PRI, RIRa, etc.) in 

discriminating the brain tumor case from the normal one is 

statistically assessed using the method of hypothesis-testing. 

A hypothetical test is a statistical test against a stated null 

hypothesis. A statistical hypothesis is an assumption or a 

guess made about a particular parameter of a population in a 

decision-making process [39]. The hypothetical test 

performed in this study may be formulated as follows [40]: 

i. Identifying the parameter of interest for the test: The 

mean of a qEEG feature extracted from the scalp EEG 

signals of a set of 102 controlled subjects and a set of 

100 brain tumor patients is the parameter of interest. 

ii. Stating the hypotheses for the test: If 
Ci
µ  and 

Bi
µ  are 

the means of a qEEG feature, i estimated from a set of 

C
n  (102, in our study) controlled subjects and a set of 

B
n  (100, in our study) brain tumor patients, 

respectively, the null hypothesis, 
0

H  is that the means 

are equal i.e., the observed difference between the 
means is only by chance and the alternate hypothesis, 

1
H  is that the means are not equal i.e., 

 

0
:  or 0

Ci Bi Ci Bi
H µ µ µ µ= − =                  (8) 

 

1
:  or 0

Ci Bi Ci Bi
H µ µ µ µ≠ − ≠  (two-tailed)           (9) 

 
iii. Deciding on the significance level of the test: A desired 

level of significance, ,α  which is the maximum 

probability of taking the risk to reject the null 
hypothesis when it is true [39], is chosen in the interval 
(0, 1). In this study, 0.05α =  i.e., a significance level 

of 5 % is selected. 
iv. Computing the test statistic: The following test statistic, 

0
,z  often called the z-score, which is used to assess the 

strength of the evidence against 
0
,H  is computed as in 

(10). 

0
Ci Biz

SE

µ µ−
=                            (10) 

 

where, in (10), ( ) ( )2 2

Ci C Bi B
SE n nσ σ= +  is the 

standard error with 
Ci

σ  and 
Bi

σ  being the observed 

standard deviations of the qEEG feature, i. 
v. Computing the p-value: The p-value, which is the actual 

probability of taking the risk to reject the null 
hypothesis when it is true or, in other words, the 
observed level of significance [41], is computed as in 
(11). 

 

( )02 1p z= −Φ                              (11) 

 

where, in (11), ( ) ( )0 0
z P Z zΦ = ≤  is the area under the 

standard normal curve below 
0
.Z z=  

vi. Rejecting or accepting the null hypothesis: If ,p α<  

then the null hypothesis is rejected at ( )100 1 %α−
 

confidence (or 100 %α  significance) level. 

Even the lower p-values do not remove the ambiguity 
whether the null hypothesis is false or the alternate 
hypothesis is true. Hence, following the suggestion from 
[42], the 95 % confidence interval on the observed mean 
difference is also presented for a better understanding of the 
results of the hypothetical test carried out. The 95 % 

confidence interval, 
i
µ  on an observed mean difference, 

Ci Bi
µ µ−  for a feature, i is computed as in (12). This implies 

that there is a 95 % chance that this interval would contain 
the mean difference, had the entire population been 
considered [42]. 
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4.  RESULTS AND DISCUSSION 

Since the sample size in both cases is large enough (>40) 
for the assumption of normality [39] of the estimated feature 
values, the statistical test is carried out with the two-tailed z-
test at 95 % confidence level. 

Table 1. and Table 2. present the results of the statistical 
analysis of the candidate features from the frequency-
domain for the 2 s and 4 s segmented analyses. From the 
fourth and fifth columns of these tables, it can be easily seen 
that  there  is  not  much  difference  between  the 2 s and 4 s  
segmented analyses. Hence the 4 s segmented analysis is 
preferred due to the following facts: (i) this reduces the 
computational burden by reducing the number of segments 
to be analyzed, and (ii) this provides larger number of data  
points for a better estimation of the bispectral features. The 
latter point is evident from the statistical evaluation of 
bicoherence features, pBCslw and pBCfst. 

Comparing the results of statistical analysis presented in 
Table 1. and Table 2., it is inferred that the spectral features 
such  as  the  RIR  in the delta band (RIRd) and the mmrPS in  

the delta band (mmrPSd) show the dominance of the slow 
activities in the brain tumor. The features extracted from the 
bispectrum, namely pBSslw and pBSfst are statistically 
significant while those from the bicoherence i.e., the 
normalized bispectrum, namely pBSslw and pBCfst are not 
in Table 1. However, the increase in the data length from 2 s 
to 4 s tremendously increases the significance of these 
features, which is clearly evident from Table 2. 

According to the results of statistical analysis presented in 
Table 1. and Table 2., the feature, PRI does not show 
statistically significant difference between the brain tumor 
case and the normal one (p>0.05). But the loss in the high 
frequency power (e.g., RIRa & mmrPSa in alpha band) is 
more discriminating (p<0.0001) than the gain in the low 
frequency power (e.g., RIRd & mmrPSd in delta band) 
(p<0.001). The feature, PRI, though p>0.05, may also be 
considered significant due to a large difference in the mean 
values. Fig.1. and Fig.2. show the plots of calculated feature 
values from two-second and four-second segments, 
respectively. 

 

 

 

Table 2. Results of statistical analysis of features from four-second segments. 

Normal Brain Tumor 
Feature 

Mean (SD) Mean 
p-value CIc 

PRI 0.7407 (0.4435) 2.8856 (11.0170) 0.0517 (-0.0161, 4.3059) 

RIRd 0.1860 (0.1268) 0.2811 (0.2210) 0.0002b (0.0452, 0.1449) 

RIRt 0.1397 (0.0337) 0.1553 (0.0777) 0.0649 (-0.0010, 0.0322) 

RIRa 0.3967 (0.1454) 0.2967 (0.1550) 0.0000b (0.0585, 0.1415) 

RIRb 0.0791 (0.0133) 0.0686 (0.0544) 0.0585 (-0.0004, 0.0216) 

RIRg 0.0021 (0.0033) 0.0018 (0.0024) 0.4374 (-0.0005, 0.0011) 

mmrPSd 4.7866 (3.2433) 6.5928 (6.9927) 0.0189a (0.2981, 3.3144) 

mmrPSt 3.7347 (0.7521) 4.1731 (2.1314) 0.0522 (-0.0042, 0.8808) 

mmrPSa 9.4331 (3.8521) 6.8017 (3.5078) 0.0000b (1.6157, 3.6470) 

mmrPSb 1.0002 (0.3005) 0.8709 (0.6049) 0.0551 (-0.0028, 0.2614) 

mmrPSg 0.0329 (0.0485) 0.0275 (0.0343) 0.3607 (-0.0062, 0.0170) 

pBSslw 4889.9794 (1162.6352) 5542.0564 (2549.2081) 0.0197a (103.8587, 1200.2954) 

pBSfst 2181.6919 (1042.7602) 1626.4340 (1002.7101) 0.0001b (273.1690, 837.3467) 

pBCslw 0.3652 (0.0812) 0.3939 (0.0519) 0.0027b (0.0099, 0.0474) 

pBCfst 0.1427 (0.2143) 0.0957 (0.0942) 0.0430a (0.0015, 0.0925) 

SE 0.5722 (0.0302) 0.5705 (0.0486) 0.7608 (-0.0094, 0.0129) 

SD Standard Deviation; ap<0.05; bp<0.01; c95% Confidence Interval on the mean difference 

Table 1. Results of statistical analysis of features from two-second segments. 

Normal Brain Tumor 
Feature 

Mean (SD) Mean (SD) 
p-value CIc 

PRI 0.7946 (0.4664) 2.8505 (10.5275) 0.0511 (-0.0095, 4.1212) 

RIRd 0.1847 (0.1242) 0.2748 (0.2125) 0.0002b (0.0420,0.1382) 

RIRt 0.1469 (0.0317) 0.1625 (0.0747) 0.0537 (-0.0002,0.0315) 

RIRa 0.3987 (0.1383) 0.3044 (0.1506) 0.0000b (0.0544, 0.1342) 

RIRb 0.0854 (0.0146) 0.0741 (0.0579) 0.0581 (-0.0004, 0.0230) 

RIRg 0.0023 (0.0035) 0.0020 (0.0025) 0.4461 (-0.0005, 0.0012) 

mmrPSd 3.7076 (2.4869) 5.6333 (4.8675) 0.0004b (0.8566, 2.9949) 

mmrPSt 3.3311 (0.5646) 3.6861 (1.6128) 0.0375a (0.0205, 0.6896) 

mmrPSa 6.9914 (2.3435) 5.3728 (2.3942) 0.0000b (0.9651, 2.2721) 

mmrPSb 0.9283 (0.2942) 0.7916 (0.5440) 0.0268a (0.0157, 0.2576) 

mmrPSg 0.0293 (0.0410) 0.0255 (0.0316) 0.4630 (-0.0063, 0.0139) 

pBSslw 5778.3231 (1268.4573) 6715.4363 (2330.4213) 0.0004b (418.2482, 1455.9782) 

pBSfst 2468.8109 (866.6290) 1950.9366 (1114.7279) 0.0002b (242.1570, 793.5917) 

pBCslw 0.5228 (0.0981) 0.5404 (0.0473) 0.1034 (-0.0036, 0.0388) 

pBCfst 0.1886 (0.2530) 0.1346 (0.1149) 0.0500 (0.0000, 0.1080) 

SE 0.5924 (0.0272) 0.5904 (0.0441) 0.7037 (-0.0082, 0.0121) 

SD Standard Deviation; ap<0.05; bp<0.01; c95% Confidence Interval on the mean difference 
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Fig.1.  Plots of the calculated feature values from two-second segments: (i) the horizontal axis shows the sample number, (ii) the vertical 

number shows the feature values, (iii) the darker line corresponds to the feature values of brain tumor (BT) case, (iv) the lighter line 

corresponds to the feature values of controlled case (CC) and (v) the horizontal broken lines indicate the means of respective cases.

 

 

 

 

Fig.2.  Plots of the calculated feature values from four-second segments.
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5.  CONCLUSIONS 

Several candidate features from the frequency-domain 

were investigated and the hypothetical test on the difference 

in the means of these features in discriminating a brain 

tumor patient from a normal subject was performed. The 

results, on the average, encourage the use of scalp EEG for 

the diagnosis of brain tumor. The statistically significant 

sample size (100 brain tumor and 102 normal cases) ensures 

the reliability of the results obtained. 

Since a set of features which are more relevant to the 

classes but less redundant to each other is required for a 

successful classification and the mere statistical inference on 

the mean difference cannot assess this, a well-defined 

feature selection process would be an appropriate approach 

to identify a subset containing the most discriminating 

features. This, along with an appropriate discriminant 

analysis, would prove the usability of these features for the 

clinical purpose. 
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