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Evaluation of uncertainties of the temperature measurement by standard platinum resistance thermometer calibrated at the defining fixed
points according to ITS-90 is a problem that can be solved in different ways. The paper presents a procedure based on the propagation of
distributions using the Monte Carlo method. The procedure employs generation of pseudo-random numbers for the input variables of
resistances at the defining fixed points, supposing the multivariate Gaussian distribution for input quantities. This allows taking into
account the correlations among resistances at the defining fixed points. Assumption of Gaussian probability density function is acceptable,
with respect to the several sources of uncertainties of resistances. In the case of uncorrelated resistances at the defining fixed points, the
method is applicable to any probability density function. Validation of the law of propagation of uncertainty using the Monte Carlo method
is presented on the example of specific data for 25 Q standard platinum resistance thermometer in the temperature range from 0 to 660 °C.
Using this example, we demonstrate suitability of the method by validation of its results.

Keywords: The law of propagation of uncertainty, Monte Carlo method, the International Temperature Scale of 1990 (ITS-90), Standard
Platinum Resistance Thermometer.

1. INTRODUCTION (TPW) cell, non-linearity of the resistance bridge, changes
of resistances of standard resistor initiated by changes of its
temperature, uncertainty of calibration of resistance
standard, etc.

The aim of this study is

a) presentation of the MCM for uncertainty evaluation of

it takes into account correlation among the Standard the international temperature scale ITS-90 by using
Platinum Resistance Thermometer (SPRT) resistances from SPRT calibrated at DFPs;

calibration as well as the SPRT resistances in temperature  b) validation of the process by using the law of propagation
measurement. Generating input variables only from the one- of uncertainty according to the Guide to the Expression
dimensional distribution is sufficient for uncorrelated of Uncertainty in Measurement GUM [1] for specific
resistances. conditions.

.In.ou{ case it’ is necessary to identify the prol.)abi.lity The procedure was designed to take into account
distributions of input quantities and relevant multivariate o000 among the SPRT resistances obtained from

dlstrlt?qtlon function for - the case O.f cprrelated mput . libration at the DFPs and those obtained in temperature
quantities. We can assume normal distribution for all input

This paper presents a method based on the propagation of
distributions by Monte Carlo method (MCM). The
procedure is based on the generation of pseudo-random
numbers of input variables of multi-dimensional
distribution. Multi-dimensional distribution is used because

. . measurements.
SPRT resistances and therefore multivariate normal Infl b q . drif
distribution for correlated resistances. This assumption is n .uences suc. .as uctuations, —drifts, temperature
based on the central limit theorem, because several sources gradients and similar are not analyzed. Also, the

of uncertainties are present at the measurement: e.g. self- uncertainties caused by non-uniqueness and consistency

heating effect of the SPRT, chemical impurities of the
substance in defining fixed points (DFPs), immersion effect
of the SPRT, hydrostatic-head effect, effect of gas pressure
in DFPs, choice of fixed point value from plateau isotopic
variations, residual gas pressure in triple point of water

DOI: 10.1515/msr-2017-0014

sub-ranges are not included. These questions are presented
e.g. in [2]. The case study focuses on determination of
uncertainties related to realization of international
temperature scale by using SPRT calibrated in the range
from 0 °C to the freezing point of aluminum (660.323 °C).
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2. CURRENT STATUS OF THE ISSUE

Most published papers employ an approach based on the
law of propagation of uncertainty GUM and its supplements
[3] and [4], fewer papers are based on the orthogonal
polynomials. The overview of the approaches is presented in
[5], [6]. Matrix interpretation of GUM method is described
in [7]. Specific approaches dealing with density functions
and confidence intervals are mentioned in [8], [9]. The
effect of covariance on uncertainty when realizing ITS-90
temperature scale is discussed in [6]. Uncertainty
determination by MCM is discussed e.g. in [10], [11].
Propagation of distributions using MCM, based on
Supplement 1 [3] to the GUM [1], occurs only in a few
isolated cases e.g. [12], [13]. In general, authors predict
uncorrelated resistances among the defining fixed point
(DFP) and neglect the influence of correlations. Omitting
the correlations among resistances in individual DFPs does
not always correspond to reality and they can have a
significant impact, see [6]. Progressive Bayesian analysis
introduces another point of view. Simple measurement
model is presented in [14].

Deviation equations and ratios of resistance belong to a
non-linear model, defined by ITS-90. The non-linear model
can generate some doubts about the adequacy of its
linearization by expansion in Taylor series of the first order.
Also, complications with the determination of the sensitivity
coefficients may occur. In such cases, Monte Carlo method,
based on propagation of distributions, is preferably used.
Papers on the Monte Carlo method, which follows the
recommendations and procedures listed in [3], appear
sporadically. The basic principle of both methods is shown
in Fig.1.
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Fig.1. The law of propagation of uncertainty (up) and the law of
propagation of distribution (down).

3. THEORETICAL BASES OF ITS-90

International Temperature scale of 1990 defines the
temperature from the inverse function

T=fW) o

Corresponding sub-ranges of the ITS-90 from 0 °C for the
functions (1) are stated in [15]. Function W, is given by

W, =W - XL af;(W) (2)
where
R
W= RTpw (3)
while

R is the SPRT resistance at temperature T and Rypy is
the SPRT resistance at TPW

fi(W) are functions of the individual sub-ranges, see
[15].

a; are coefficients of deviation function from the
calibration of SPRT at DFPs and

a; = g1 (Rrpw1, - » Rrpwns Roppas s Rpppy) 0T @ =

92 Woep1, Woepz, -, Wpppn).
Matrix notation for the calculation of the coefficients of

deviation function can be used. If the relationship (2) is

applied to N fixed points, then
AW]?FPl f1(Wpr1) fN(WDFPl) ! A
<AWI;FPN> ) (fl (W].JFPN) fN(W;)FPN)> <a.N> @
where AWpgp; = Wipppi — Wprpi>» Whprp; are resistance
ratios for corresponding DFPi and W, ppp; are defined in

[15].
Equation (4) is written in the form

AWppp = Mppp @ Q)

As Mplp exists, coefficients of deviation function are
given by

a = Mpip AW ppp (6)
Then the equation (2) can be rewritten as follows
W, =W + a’ f(W). )

4. APPLICATION OF MONTE CARLO METHOD
A. The input data and basic relations

Input data for Monte Carlo method are represented by
SPRT resistances at defining fixed points, obtained from
calibration and SPRT resistances obtained from temperature
measurement. Thus, input quantities can be written as vector
of dimension 2N + 2 where

R= ( RTPWl' e RTPWN! RDFPl' e RDFPN! RTPW' R)T (8)

Covariance matrix and vector of input quantities will be in
form (2 4+ 2N)x(2 + 2N). The resistances of SPRT are
determined on the basis of SPRT calibration at DFPs, i.e.
vector

R = (Rtpwi1, - » Rrpwi, Rppp1s ---rRDFPN)T- )

SPRT resistances R corresponding to measured
temperatures T, as well as SPRT resistances at triple point of
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water Rrpyw, their covariances and uncertainties are
determined in phase of temperature measurement. It implies
the vector Rpess = (R, Rrpw)T and its covariance matrix.
Beside that it is necessary to consider the covariances
among SPRT resistances obtained from calibration and from
temperature measurement. Then we can write the covariance
matrix of the vector  (8) in the form

VRmeaSchal>
VRcal

Vo = ( VRmeas
R=
VRmeas. Rca)

Covariance matrix Vg - expresses the uncertainties of
SPRT resistances and covariances among them for
temperature measurements in equation (10). Covariance
matrix Vg expresses uncertainties of SPRT resistances

(10)

and covariances among them for calibration of SPRT at
DFPs. Matrix Vg g expresses the covariances among

the SPRT resistances from measurement and resistances

from calibration. In case of in-house temperature
measurement, i.e. SPRT resistance value at TPW is used
from calibration, matrix Vg .. g has nonzero values. If
we suppose that SPRT resistances during temperature
measurement were obtained under the same conditions as
they were in calibration process, then there could be also
covariances between SPRT resistances for temperature
measurement and SPRT resistances from calibration.

Usually, in practice, the covariances among SPRT
resistances are not considered, excluding those at TPW.
Two cases of temperature measurement are considered here,
a) the use of calibrated SPRT in the laboratory (in-house), b)
the use of calibrated SPRT outside the laboratory.

B. Procedure of calculation

Fig.2. schematically shows the process of calculation the
temperature and its standard uncertainty by using Monte
Carlo method [3].

i Rsp Rzn W Ra Calculation the relative resistance
"7 Rrpwsn’ " Reewza' ™ Rrewal R = (R, Rrpw, Rtpw1, -, Rrpwn, Rorpa, s Roppn)T
MCM inputs Coefficients deviation equation Coverage interval p
a,b,c
R, T 2 W, —2.64 : Number M of
Y=fX), W= w—27315 = Dy + D-—[i
fX) Rrpw K 0 ; : 1.64 Monte Carlo trials

MCM propagation: draws from the joint
PDF for the output quantities and evaluation

Vi Vi

M vectors

X1, ..., Xy drawn from g, (§)

v

of the vector output quantity for these draws

M vector output quantity values
Yr=

f(x,) drawn fromr = 1,..,M

Primary MCM output:
distribution function for output quantity

Vv

Discrete representation G of
distribution function for output quantity ¢

Vi Vi

MCM summarizing

Estimate the value of output quantity ¢
and the associated standard uncertainty u(t)

Coverage region
[ylowr yhigh] fort

Fig.2. Computing phase of calibration using Monte Carlo method [3].

C. Used software and pseudo-random numbers generation

When selecting a suitable programming software
environment, it was crucial to create an application which
would be easy to use and portable. It was also necessary to
consider the efficiency of the calculation of final application
and the way of implementation of Mersenne Twister
generator. For these reasons, Microsoft Visual Basic.NET
programming environment was chosen and 32-bit version of
operating system has been used due to direct compatibility
with newer 64-bit operating systems.

Visual Basic does not integrate the generation of pseudo-
random numbers with Mersenne Twister (MT) generator
which is currently the best rated algorithm which has
undergone a large number of experiments for testing
pseudo-random numbers. Therefore, the final algorithm uses
the original MT source code translated to VB.NET
framework. Since MT generator generates numbers from
uniform distribution, it was necessary to use the Box-Muller
transformation method. This method allows transforming
uniformly distributed random variables to the Gaussian
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distribution. The application of the Box-Muller
transformation method can be simplified by utilizing the fact
that the MT generator allows direct generation of uniformly
distributed numbers over the interval [-1, 1]. Input variables
x; and x, take values from listed interval and subsequently
enter formula w = xZ + x2. This loop repeats until the

condition w < 1 is true. Afterwards u = /[-2 - log(w)]/w

can be calculated and two independent output pseudo-
random variables with normal distribution N(0,1) are
obtained, using y; =x;-u and Yy, =X, u. Normal
distribution for any mean value p and the variance o can be
obtained as u+ ¢ -z where z is a matrix of randomly
generated values from standard normal distribution N (0, 1).
In our case, normal distribution is assumed for all input
quantities and they are correlated in general.

If we want to construct a generator of pseudo-random
numbers from a multi-dimensional normal distribution
N(u, V), it is essential to establish dimension n of
multidimensional normal distribution, vector of mean values
p of dimension nXx1, covariance matrix V of dimension
nxn and the number of trials that should be generated. A
matrix X of dimension nXq must be generated as well. We
derive RT from the covariance matrix V by using the
Cholesky decomposition V = RTR. We will generate a
matrix Z of dimension nxq from the normal distribution.
Then we compute X = u1T + RTZ, where 1 denotes the
unit vector of dimension q (see [3]). The number of Monte
Carlo trials M that must be carried out for each sequence h,
must be determined for calculation of the estimate of
temperature T and its standard uncertainty u(T) by adaptive
Monte Carlo method. For the output quantity T we have to
consider the reference probability p and the number of
significant decimal digits ng;; from a standard uncertainty
u(T). Number of Monte Carlo trials M increases as (M xh)
by each further sequence of calculation h to stabilize the
required statistical output quantities.

5. EVALUATION OF UNCERTAINTY AND EXPERIMENTAL DATA

In order to compare the results of both realized cases
(calibration in-house and outside the laboratory), we employ
the evaluation data obtained from the Slovak Institute of
Metrology (SMU) — see Table 1. These values will be used
as inputs for evaluating of realization of ITS-90 and
corresponding uncertainties by Monte Carlo method.

A. Inputs and considered cases

The input data are given in Table 1. We consider the
temperature measurement according to ITS-90 first in the
calibration laboratory (in-house), then outside the calibration
laboratory. For temperature measurement, the same TPW
cell is used as was used for realization of temperature scale.
In this case, the SPRT resistances at TPW after tin, zinc and
aluminum are correlated (for sake of simplicity we consider
the correlation coefficient » = 1). SPRT resistance of
temperature measurement is considered uncorrelated with
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the other SPRT resistances. SPRT resistances at DFPs are
considered either uncorrelated (cases a), b)), or correlated
(cases ¢), d)). The correlation coefficients among resistances
at TPW and DFPs are considered uniformly » = 0.4 while
correlation coefficients among the resistances at DFPs are
uniformly considered as » = 0.3.

Case a) SPRT is used in-house, resistances at DFPs are
uncorrelated

11100010
11100010
11100010

RR:00010000
0000100 O0F
00 0O0O0T1TU0ODO
\11100010/
00 00O0TUO0TU 01
161 161 161 0 0 0 161 0
161 161 161 0 0 0 161 0
161 161 161 0 0 0 161 0
a0l O 0O 0 148 0 0 0 0
Ve =10 000024.8000|
0 0 0 0 0 399 0 o0
\1.61 161 161 0 0 0 161 0/
0 0 0 0 0 0 0 4.00

Case b) SPRT is used outside calibration laboratory,
resistances at DFPs are uncorrelated

11100000
11100000
11100000

RR:00010000
0000 100O0F
00 0O0O0T1TU0ODO0
\00000010/
00 00O0UO0OTU 01
161 161 161 0 0 0 0 0
161 161 161 0 0 0 0 0
161 161 161 0 0 0 0 0
a0l O O 0O 148 0 0 0 0
Vi =10 000024.8000|
0 0 0 0 0 399 0 0
\0000001.610/
0 0 0 0 0 0 0 400

Case c) SPRT is used in-house, resistances at DFPs are
correlated

1 1 1 04 04 04

1 1 1 04 04 04 1 O

04 04 04 1 03 03 04 O

04 04 04 03 1 03 04 O

04 04 04 03 03 1 04 O
04 04 04
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[=]

1 1 1 04 04 04 1 0\
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[N
o
o
o ¢

o

o

o
— o
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1.61
1.61
1.61
1.96
2.53

1.61
1.61
1.61
1.96
2.53

1.96
1.96
1.96
14.8
5.75

2.53
2.53
2.53
5.75
24.8
3.21 321 730 9.44 399
\161 1.61 1.61 196 253 321 1.61

0 0 0 0 0 0 0 4

3.21
3.21
3.21
7.30
9.44

161 0
161 0
161 0
196 0
253 0
0
0
0

Ve=10"10

3.21

Ne—
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Case d) SPRT is used outside calibration laboratory,
resistances at DFPs are correlated

1 1 1 04 04 04 0 0
/1 1 1 04 04 04 0 0\
1 1 04 04 04 0 0
R._|04 04 04 1 03 030 0|
R=104 04 04 03 1 03 0 0
04 04 04 03 03 1 0 0
00 0 0 0 0 10
00 0 0 0 0 01
161 161 161 196 253 321 0 0
161 161 161 196 253 321 0 0
161 161 161 196 253 321 0 0
v :10_10|1.96 196 196 148 575 730 0 0 |
R 253 253 253 575 248 944 0 0
321 321 321 730 944 399 0 0
0o 0 ©0 0 0 0 161 0
0 0 0 0 0 0 0 400

Whereby Vz = PxRzP} and Py is a diagonal matrix of
dimension 8% 8 with diagonal elements:

U(Rrpw sn), W(Rrpw zn), U(Rrpw A1), U(Rsn), u(Rzp),
u(Ra1), u(Rrpw), u(R).

The results of simulation by Monte Carlo method and
GUM are presented in Table 4. The graphical comparison of
both methods for 66 calibration points within the range (0 +~
660) °C of the ITS-90 is illustrated in Fig.10.

Table 1. Measured values of SPRT resistances in defining fixed

point.
Defining fixed Resistance Standard uncertainty of

point Q) resistance (Q)

Sn 46.9397533 3.85 x 107

Zn 63.7056752 4.98 x 10

Al 83.7191875 6.32 x 107
TPWsn 24.8002001 1.27 x 10
TPWzn 24.8001927 1.27 x 107
TPWai 24.8001872 1.27 x 103

We consider M = 10° Monte Carlo trials. For the output
quantity T we consider the reference probability p = 0.95
and the number of significant decimals of the standard
uncertainty ng; = 2. Fig.3. shows a histogram of resistance
Ry, as given in the example 5.B.
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Fig.3. Histogram of input resistance.
The coefficients a,b,c of deviation function can be

determined from equation (6), see Fig.5. for their
calculation. Histograms of coefficients of deviation function
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and the coefficient a, presented in Fig.4., have similar
shape.
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Fig.4. Histogram of the deviation equation for coefficient a.
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Fig.5. Sub-model for calculation of the coefficients of deviation
function.

W
FI s AN
R;
N> W

A R | o >

Fig.6. Model to calculate temperature and corresponding standard
uncertainty.

Fig.6. shows the calculation procedure for determination

of the temperature 7, where fg = ——, from equation (2)

we can determine fy = a(W - D+bW-1)2%+
c(W —1)® and from equation (7) we get fio =W —
aW—-1)+b(W —1)?+ ¢c(W —1)3. Histogram of
estimated temperature ¢ is presented in Fig.8.

B. Example of calculating the output characteristics for the
case b)

Temperature according to ITS-90 and corresponding
standard uncertainty was determined for data in Table 1. and
for correlation matrix of resistances for case b, see Table 2.

Table 2. Evaluation of specific resistance using the law of
propagation of uncertainty.

Ri(Q) 1i (°C) u(t) (°C)

46.55489887 227.75076 5.59864 x 104
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Let’s use the MCM with h = 20 and M = 10°. Based on
the generated input values for resistances and using
appropriate relationship, we get estimate of the temperature
t (°C).

227.7479428
t= : (11)

227.7533240

The symmetrical reference interval with the specified
probability for the estimating output quantity t is obtained
from its generated discrete representation (distribution
function shown in Fig.7.). To do so, generated values are
arranged at non-decreasing sequence, using rules listed in
[3]. According to that procedure, we get the following
symmetric confidence interval

t = [Vimin ; Ymax] = [227.74966142 ;227.75185372]  (12)
and following narrowest confidence interval
t = [Vimin ; Ymax] = [227.74966148 ;227.75185375]  (13)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

0.0 P
227.747 227.748

measured values
=== narrowest interval

..... > symetric interval

----- > 2277518537224
J=> 2277518537458

227.7496614203 ws=nes
227.7496614752 <=}
]

Cumulative distribution function ( - )

]
(]
1
]
1
1
1
1
22

227.749 22775
Temperature (°C)

227.751 7.752 227.753 227.754

Fig.7. The distribution function of the output temperature.

Statistical characteristics of the resulting estimates are
calculated from the partial estimates in each sequence y™,
u(y(h)). After calculating the last sequence h, it is possible
to calculate the resulting parameters for estimation. In this
case

=y= —Zl 1y® =227.7507574 °C (14)

s = \/h(hl_l) h(y® —$)2=339088x1077°C  (15)
The standard uncertainty

a®y) = %z{;lu(y(i)) =5.59883 x107*  (16)

1 . ~ 2
Sa(y) = \/m L (u@y®) —a(y))" = 2.70938 x
1077°C  (17)

The lower end point of the narrowest confidence interval
of stabilization criteria

— @O 10 ) (20)y _
Vmin = {l 1Ymin = E(ymin Ymin T+ TVmin
227.7496603 °C (18)

Sf’min = \[h(h 1) h Zo(yrgl)n - ymm) = 2.31921 x
1075°C  (19)

The upper end point of the narrowest confidence interval
of stabilization criteria

h @ _ ( ®

i=1 Ymax —

Y 4y @) =

ymll’l mll’l ymm

(20)

ymax - h

1
S =
Ymax \/h(h 1)

200000 227.750757360
= = <p temperature estimate —

180 000 . T
= == =P narrowest interval
160 000

= symetric interval
140 000

120 000
100 000
80000
60 000
40 000
20000
0

227.7518512 °C

2
h Zo(yrgll;x ymax) = 2.48407 X
107%°C (21

227.749661420
227.749661475 A=

227.751853722
=p 227.751853746

Frequency ( - )
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Fig.8. Histogram of output quantity ¢.

Numerical tolerance § (see more in 5.C.), expressed by the
standard uncertainty @ (y), is

5= §><10—5 = 0.000005 = 5x107° (22)
Stabilization criterion determines whether it is necessary
to increase the current value of the sequence h>2 calculation
of Monte Carlo method to the next sequence. This is the

case if one of values 2sy, 255(y), 255 . and 2sy
min max

becomes greater than §. If the stabilization criteria are

successfully met, y®M  y(y"M) are final statistical

characteristics and [yl(o’:;M), ykgngM)] are determined from

all generated values. In the given example, following results
were obtained by the Monte Carlo method:

Estimation of the temperature t = 227.75075736 °C,
standard uncertainty u(t) = 5.59884x107*°C, 95 %
narrowest interval [227.74966148 ; 227.75185375] and
95 % symmetric interval [227.74966142 ;227.75185372].
Statistical characteristic of output variable t, obtained by the
adaptive Monte Carlo method, is shown in Fig.8. as a graph
of probability distribution, where the model with one output
variable t enters the submodel with multiple output
variables a, b, c.
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C. Validation of law of propagation of uncertainty Table 3. Min. number of sequences % (each from M = 10%) and

. . . . validation result (yes v/, no %).
Calculation should prove if the reference interval obtained

by law of propagation of uncertainty and by Monte Carlo T . m G
method is identical in certain numerical tolerance. This y b 9 9 g b o 9
. . . . . 1 24.8001933 2v v 2 2v 34 54.7129134 41v
numerical tolerance is assessed in relation to end points of [ 0 o 2 35 556193595 asv
the reference interval and it gives expression of standard 3 266130855 sV 36 56.5258056 30v
. o . . v v
uncertainty u(y) to the existing number of decimal places. ~ * 275199315 6 37 574322516 20
5 28.4259776 12v 38 58.3386977 54v°
Numerical expression of tolerance O with an associated 6 29.3324237 21v 39 592451438 43v
. . . . 7 30.2388697 27V 40 60.1515898 50v°
standard uncertainty u(y), as described in section 7.9.2 [4],
1 8 31.1453158 19v/ 41 61.0580359 106V
16 = EXlOT ,u(y) =56-1075°C,a =56, r = -5, 9 320517618 20v 42 61.9644820 66v
1 _5 o 10 32.9582079 1% 43 62.8709280 45v
= 6= 2 107> = 0,00005 °C 11 33.8646540 36v 44 63.7773741 56v'
. .. v 250% 4
Absolute differences of limit values of both confidence 23771100 35 45 64.6838202 59
. . 13 35.6775461 28V 46 65.5902662 73V
intervals are determined as 14 36.5839922 31V 47 66.4967123 46v
15 37.4904382 43v 48 67.4031583 117v
16 38.3968843 24v 49 68.3096044 58v 250%
diow = |yGUM = Upos (GUM) — leW(MCM)l (23) 17303033304, 0 38V 50 692160505 250% 76v 250%
18 40.2097764 41v 51 70.1224965 85v
19 41.1162225 17v 52 71.0289426 101v
dhigh - |yGUM + Uoos (GUM) yhigh(MCM)| 24 20 42.0226686 23v 53 71.9353887 79v
21 42.9291146 52v 54 72.8418347 66V
. . 22 43.8355607 20v 9 55 73.7482! 82v
Table 4. shows detailed result of uncertainty of 6 82808
. 23 44.7420067 27V 16v 56 74.6547269 85v
temperature measurement according to ITS90 for each case 24 45.6484528 l6v 17v 57 755611729 61v
listed. The maximum number of sequences needed for — 25 46.5548989 20v 34 58 76467619 250%

. . .. . 26 47.4613449 28v 34v 59 77.3740651 89v'
Val%datpn of each case was ’ht.nlted to 250. Table 3. contains """ Yor e 60 89805111 o
validation results and minimum necessary number of 28 492742371 av 34 61 79.1869572 128v
Sequences fOr all cases. 29 50.1806831 26v 51v 62 80.0934032 89v

. . . . 30 51.0871292 26v 63 80.9998493 151v

Fig.9. shows the user interface of created application for 3 503553 a0 e 64 819002954 o
the evaluation and validation of the standard platinum 32 s2.9000213 32v 65 82.8127414 2 124v
: v v v
resistance thermometer by the Monte Carlo method. 33 538064674 3 66 837191875 2 124
; "me':,:.mvl,:.“ Values from GUM calibration | Reference resstances a0t Probability density function of output quantity t
2 Num. o sequences [ 20| (k=1.950063988) p | 095 | 700) We, Symmetric interval
O save vaues Number of vald dec. plaes u(7)(°C) | 0.00055986423390068 W, | 25689173 Shortest interval
:;u:\:m S LZT’;:‘:::;::‘::M “h:,;m R(0) [_4655a8088717948 | W [ 33760088 | 150000
Calibration resistances Correlation matrix Evaulation ;
Estimation (Q) Uncerainty (Q) | Rpws, Riwz Rrewn  Rs Ry, Ry Ripw R MCM GUM § 100 000—|
Ropwsa|_24.8002001 | 0.0000127 | |[0.999995[0.999909]0.999998] 0 0 0 0 ] J(°C)[ 22775 | 22175 g
Rronzo| 248001927 | 0.0000127 ||[0.099999] 1 [0.999999] 0 0 0 0 0 u(j) (°C) [ 5.5986E-04 | 5.5986E-04
Ripyu| 24.8001872 | 0.0000127 10.999999/0.999999| it 0 0 0 0 0 Jnin (°C) | 227.7497 | 227.7497
Rs,| 46.9397533 | 0.0000385 0 0 0 1 0 0 0 0 Jmex (°C) | 227.7519 | 227.7519 50 000—
Rh 63.7056752 | 0.0000498 0 0 0 0 1 0 0 0 M - h| 2000 000
Ry| 83.7191875 | 0.0000632 0 0 0 0 0 1 0 0 drin (°C) | 2.0144E-06
RW, 24.8001933 | 0.0000127 0 0 0 0 0 0 1 0 drex (°C) | 3.4247E-07 -
R| 46.554898871 0.00002 0 0 0 0 0 0 0 1 Validation | successfull St 21749 21751 2175
Sequence: 20 of 20 Status: Ready Cholesky OK Temperature (°C)
200 000 a 200000 b 200000 c 200000 Rsa 200000 Rz
100 000 100 000 100 000 100 000 100 000
50 000 50 000 50 000 50 000 50 000
-1.2E-04 9.7E-05 -1.TE-05 -5.7E-05 -3.7E-05 -9E-05 -TE-05  -5E-05 -3E-05 -6E-06 1E-05 1E-05 -6E-08 -1E-06 4E-06 9E-08 1E-05  2E-05 46.9395 46. 53;5 46.9307 46. N'FE 46.9399 63.7054 63'7055 63, 7053'
200 000 RM 200 000 RTPW sn 200 000 RTPW n 200 000 RTPW A 200000 RTPW
150000 150 000 150 000 150 000 150 000
o
50000 50 000- 50 000 50 000 50 000
s 837150 87152 a7194 2 -‘W:\- p T 0 0 T » -‘“&:‘ 0 00 g 0 T 0 » ‘“:\- o 00 g0 0 T 0 e . ‘“&i p I S 00 g g

Fig.9. User interface of the application at the end of calculation.
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Table 4. Comparison and verification of the law of uncertainty
propagation through the law of distribution propagation using
MCM for one value ¢ in different cases (v = validation successful,
x = validation unsuccessful).

95% coverage

M t u(t) interval GUF
Case Method (x10%) () (°Cx10) Low validated
High
227.749925
a) GUF - 227.750757 4.24 227751588 -
MCM 227.749769
shortest L 227750758 498 555051722 %
MCM 227.749657 «
shortest 227.751852
MCM 250 227.750757 5.60 227749660 .
symmetric 227.751855
227.749659
b)  GUF - 227.750757 5.60 227751854 -
MCM 227.749672
shortest L 227750758 560 557751863  *
MCM 227.749661 v
shortest 227.751854
MCM 20 227.750757 5.60 227749661
symmetric 227.751854
227.749931
c) GUF - 227.750757 4.21 227751583 -
MCM 227.749823
shortest L 227750758 476 557751687 *
MCM 227.749831 <
shortest 227.751692
MCM 250 227.750757 4.75 227749827 .
symmetric 227.751688
227.749826
d) GUF - 227.750757 4.75 227751687 -
MCM 227.749823
v
shortest 1 227.750758  4.76 227.751687
MCM 227749829
shortest 227.751690
MCM 34 227.750757 4.75 227.749827 .
symmetric 227.751688
227.749929
e) GUF - 227.750757 4.22 227751585 -
MCM 227.749769
shortest L 227750758 498 550051700 %
MCM 227.749781 <
shortest 227.751732
MCM 250 227.750757 4.98 227.749782 .
symmetric 227.751733
227.749781
f) GUF - 227.750757 4.98 227751732 -
MCM 227.749769
shortest L 227750758 498 oy7951720 %
MCM 227.749778 v
shortest 227.751729
MCM 82 227.750757 4.98 227.749782 ,
symmetric 227.751733

GUM uncertainty framework (GUF) [1], each sequence of MCM consist of
M = 1x10° trials

6. CONCLUSIONS

This paper presents a procedure employing the Monte
Carlo method for the determination of uncertainties of
temperature scale. The procedure is based on generating
pseudo-random numbers for the input SPRT resistances at
DFPs and at TPW.

In order to consider the correlations among DFPs, the
approach of generating pseudo-random numbers from

multivariate distributions was used. To do so, an 8-
dimensional Gaussian probability distribution was assumed.
The assumption of Gaussian distribution is quite acceptable,
given several sources of uncertainty of SPRT resistances at
DFPs. If the correlations between the SPRT resistances at
DFPs are negligible, it is possible to adapt the model so that
the input resistances are uncorrelated and one-dimensional
distributions for each input resistance can be used.

Fig.10. shows the course of uncertainty for the entire range
considered and for each case. The figure compares
uncertainties of temperatures obtained by using MCM and
by law of propagation of uncertainty. As already mentioned
in [16], the uncertainty due to the correlation between
resistances of SPRT at DFPs can reduce the value of the
uncertainty of temperature, doing so even in DEFPs
themselves.

MCM - case a)
1 — = =MCM - case b)
MCM - case c)
......... MCM - case d)

====-GUM - case a)
......... GUM - case b)
_____ GUM - case ¢)
..... GUM - case d)

MCM - case a)

MCM - case d)

MCM - case b)
6 |GUM-caseb)

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Temperature (°C)

Fig.10. Comparison of MCM and GUM for different cases,
illustrated on subrange (0 + 660) °C of ITS-90.

Attention was also paid to validation of the use of law of
propagation of uncertainty in accordance with the GUM for
particular conditions. On the basis of validation, we found
out that for some cases the results given by using MCM and
law of propagation of uncertainty were not consistent.
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