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Evaluation of uncertainties of the temperature measurement by standard platinum resistance thermometer calibrated at the defining fixed 
points according to ITS-90 is a problem that can be solved in different ways. The paper presents a procedure based on the propagation of 
distributions using the Monte Carlo method. The procedure employs generation of pseudo-random numbers for the input variables of 
resistances at the defining fixed points, supposing the multivariate Gaussian distribution for input quantities. This allows taking into 
account the correlations among resistances at the defining fixed points. Assumption of Gaussian probability density function is acceptable, 
with respect to the several sources of uncertainties of resistances. In the case of uncorrelated resistances at the defining fixed points, the 
method is applicable to any probability density function. Validation of the law of propagation of uncertainty using the Monte Carlo method 
is presented on the example of specific data for 25 Ω standard platinum resistance thermometer in the temperature range from 0 to 660 °C. 
Using this example, we demonstrate suitability of the method by validation of its results. 
 
Keywords: The law of propagation of uncertainty, Monte Carlo method, the International Temperature Scale of 1990 (ITS-90), Standard 
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1.  INTRODUCTION 

This paper presents a method based on the propagation of 
distributions by Monte Carlo method (MCM). The 
procedure is based on the generation of pseudo-random 
numbers of input variables of multi-dimensional 
distribution. Multi-dimensional distribution is used because 
it takes into account correlation among the Standard 
Platinum Resistance Thermometer (SPRT) resistances from 
calibration as well as the SPRT resistances in temperature 
measurement. Generating input variables only from the one-
dimensional distribution is sufficient for uncorrelated 
resistances. 

In our case it is necessary to identify the probability 
distributions of input quantities and relevant multivariate 
distribution function for the case of correlated input 
quantities. We can assume normal distribution for all input 
SPRT resistances and therefore multivariate normal 
distribution for correlated resistances. This assumption is 
based on the central limit theorem, because several sources 
of uncertainties are present at the measurement: e.g. self-
heating effect of the SPRT, chemical impurities of the 
substance in defining fixed points (DFPs), immersion effect 
of the SPRT, hydrostatic-head effect, effect of gas pressure 
in DFPs, choice of fixed point value from plateau isotopic 
variations, residual gas pressure in triple point of water 

(TPW) cell, non-linearity of the resistance bridge, changes 
of resistances of standard resistor initiated by changes of its 
temperature, uncertainty of calibration of resistance 
standard, etc.  

The aim of this study is 
a) presentation of the MCM for uncertainty evaluation of 

the international temperature scale ITS-90 by using 
SPRT calibrated at DFPs; 

b) validation of the process by using the law of propagation 
of uncertainty according to the Guide to the Expression 
of Uncertainty in Measurement GUM [1] for specific 
conditions. 

The procedure was designed to take into account 
correlations among the SPRT resistances obtained from 
calibration at the DFPs and those obtained in temperature 
measurements. 

Influences such as fluctuations, drifts, temperature 
gradients and similar are not analyzed. Also, the 
uncertainties caused by non-uniqueness and consistency 
sub-ranges are not included. These questions are presented 
e.g. in [2]. The case study focuses on determination of 
uncertainties related to realization of international 
temperature scale by using SPRT calibrated in the range 
from 0 °C to the freezing point of aluminum (660.323 °C). 

Journal homepage: http://www.degruyter.com/view/j/msr 
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2.  CURRENT STATUS OF THE ISSUE 

Most published papers employ an approach based on the 
law of propagation of uncertainty GUM and its supplements 
[3] and [4], fewer papers are based on the orthogonal 
polynomials. The overview of the approaches is presented in 
[5], [6]. Matrix interpretation of GUM method is described 
in [7]. Specific approaches dealing with density functions 
and confidence intervals are mentioned in [8], [9]. The 
effect of covariance on uncertainty when realizing ITS-90 
temperature scale is discussed in [6]. Uncertainty 
determination by MCM is discussed e.g. in [10], [11]. 
Propagation of distributions using MCM, based on 
Supplement 1 [3] to the GUM [1], occurs only in a few 
isolated cases e.g. [12], [13]. In general, authors predict 
uncorrelated resistances among the defining fixed point 
(DFP) and neglect the influence of correlations. Omitting 
the correlations among resistances in individual DFPs does 
not always correspond to reality and they can have a 
significant impact, see [6]. Progressive Bayesian analysis 
introduces another point of view. Simple measurement 
model is presented in [14]. 

Deviation equations and ratios of resistance belong to a 
non-linear model, defined by ITS-90. The non-linear model 
can generate some doubts about the adequacy of its 
linearization by expansion in Taylor series of the first order. 
Also, complications with the determination of the sensitivity 
coefficients may occur. In such cases, Monte Carlo method, 
based on propagation of distributions, is preferably used. 
Papers on the Monte Carlo method, which follows the 
recommendations and procedures listed in [3], appear 
sporadically. The basic principle of both methods is shown 
in Fig.1. 
 

 
 

Fig.1.  The law of propagation of uncertainty (up) and the law of 
propagation of distribution (down). 

 
3.  THEORETICAL BASES OF ITS-90 

International Temperature scale of 1990 defines the 
temperature from the inverse function 
 � = �����                                   (1) 
 

Corresponding sub-ranges of the ITS-90 from 0 °C for the 
functions (1) are stated in [15]. Function �� is given by 

�� = � − ∑ 
��������
�                           (2) 
 
where 
 � = �����                                    (3) 

 
while 
 � is the SPRT resistance at temperature � and ���� is 

the SPRT resistance at TPW 
 ����� are functions of the individual sub-ranges, see 

[15]. 
 
� are coefficients of deviation function from the 

calibration of SPRT at DFPs and 
 
� = �� ������, … , ����� , �����, … , � !"�� or 
� =�# ������, ����#, … , � !"��. 

Matrix notation for the calculation of the coefficients of 
deviation function can be used. If the relationship (2) is 
applied to N fixed points, then 
 

$∆�����⋮∆�����
' = $��������� ⋯ ���������⋮ ⋱ ⋮��������� ⋯ ���������' $
�⋮
�'       (4) 

 
where ∆����� = �*,���� − �����, ����� are resistance 
ratios for corresponding DFP- and �*,����  are defined in 
[15]. 

Equation (4) is written in the form  
 ∆.��� = /��� 0                               (5) 
 

As /���1�  exists, coefficients of deviation function are 
given by 
 0 = /���1�  ∆.���                               (6) 
 

Then the equation (2) can be rewritten as follows 
 �� = � + 034�.�.                             (7) 
 
4.  APPLICATION OF MONTE CARLO METHOD 

A.  The input data and basic relations 

Input data for Monte Carlo method are represented by 
SPRT resistances at defining fixed points, obtained from 
calibration and SPRT resistances obtained from temperature 
measurement. Thus, input quantities can be written as vector 
of dimension  27 + 2 where 

 8 = � �����, … , ����� , �����, … , �����,  ����, ���.      (8) 
 

Covariance matrix and vector of input quantities will be in 
form �2 + 2N�×�2 + 27�. The resistances of SPRT are 
determined on the basis of SPRT calibration at DFPs, i.e. 
vector  
  8;<= = ������, … , ����� , �����, … , �������.        (9) 

 
SPRT resistances � corresponding to measured 

temperatures �, as well as SPRT resistances at triple point of 
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water ����, their covariances and uncertainties are 
determined in phase of temperature measurement. It implies 
the vector  8>?<@ = ��, ������ and its covariance matrix. 
Beside that it is necessary to consider the covariances 
among SPRT resistances obtained from calibration and from 
temperature measurement. Then we can write the covariance 
matrix of the vector       (8) in the form 
 

 AB = C  A 8DEFG  A 8DEFG, 8HFI A 8DEFG, 8HFI  A 8HFI J.             (10) 

 
Covariance matrix  A 8DEFG expresses the uncertainties of 

SPRT resistances and covariances among them for 
temperature measurements in equation (10). Covariance 
matrix  A 8HFI  expresses uncertainties of SPRT resistances 
and covariances among them for calibration of SPRT at 
DFPs. Matrix  A 8DEFG, 8HFI  expresses the covariances among 
the SPRT resistances from measurement and resistances 

from calibration. In case of in-house temperature 
measurement, i.e. SPRT resistance value at TPW is used 
from calibration, matrix  A 8DEFG, 8HFI  has nonzero values. If 
we suppose that SPRT resistances during temperature 
measurement were obtained under the same conditions as 
they were in calibration process, then there could be also 
covariances between SPRT resistances for temperature 
measurement and SPRT resistances from calibration.  

Usually, in practice, the covariances among SPRT 
resistances are not considered, excluding those at TPW. 
Two cases of temperature measurement are considered here, 
a) the use of calibrated SPRT in the laboratory (in-house), b) 
the use of calibrated SPRT outside the laboratory.  
 
B.  Procedure of calculation 

Fig.2. schematically shows the process of calculation the 
temperature and its standard uncertainty by using Monte 
Carlo method [3].  

 
 

 
 

Fig.2.  Computing phase of calibration using Monte Carlo method [3]. 
 
C.  Used software and pseudo-random numbers generation 

When selecting a suitable programming software 
environment, it was crucial to create an application which 
would be easy to use and portable. It was also necessary to 
consider the efficiency of the calculation of final application 
and the way of implementation of Mersenne Twister 
generator. For these reasons, Microsoft Visual Basic.NET 
programming environment was chosen and 32-bit version of 
operating system has been used due to direct compatibility 
with newer 64-bit operating systems. 

Visual Basic does not integrate the generation of pseudo-
random numbers with Mersenne Twister (MT) generator 
which is currently the best rated algorithm which has 
undergone a large number of experiments for testing 
pseudo-random numbers. Therefore, the final algorithm uses 
the original MT source code translated to VB.NET 
framework. Since MT generator generates numbers from 
uniform distribution, it was necessary to use the Box-Muller 
transformation method. This method allows transforming 
uniformly distributed random variables to the Gaussian 
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distribution. The application of the Box-Muller 
transformation method can be simplified by utilizing the fact 
that the MT generator allows direct generation of uniformly 
distributed numbers over the interval [-1, 1]. Input variables K� and K# take values from listed interval and subsequently 
enter formula L = K�# + K##. This loop repeats until the 

condition L M 1 is true. Afterwards O = PQ−2 ∙ log�L�V/L 
can be calculated and two independent output pseudo-
random variables with normal distribution 7�0, 1� are 
obtained, using Y� = K� ∙ O and Y# = K# ∙ O. Normal 
distribution for any mean value Z and the variance [ can be 
obtained as \ + ] ∙ ^ where ^ is a matrix of randomly 
generated values from standard normal distribution 7�0, 1�. 
In our case, normal distribution is assumed for all input 
quantities and they are correlated in general.  

If we want to construct a generator of pseudo-random 
numbers from a multi-dimensional normal distribution 7�\, A�, it is essential to establish dimension _ of 
multidimensional normal distribution, vector of mean values \ of dimension _×1, covariance matrix A of dimension _×_ and the number of trials that should be generated. A 
matrix ` of dimension _×a must be generated as well. We 
derive 8� from the covariance matrix A by using the 
Cholesky decomposition A = 8�8. We will generate a 
matrix b of dimension _×a from the normal distribution. 
Then we compute ` = \c� + 8�b, where c denotes the 
unit vector of dimension a (see [3]). The number of Monte 
Carlo trials  d that must be carried out for each sequence e, 
must be determined for calculation of the estimate of 
temperature � and its standard uncertainty O��� by adaptive 
Monte Carlo method. For the output quantity � we have to 
consider the reference probability f and the number of 
significant decimal digits _ghi from a standard uncertainty O���. Number of Monte Carlo trials d increases as �d×e� 
by each further sequence of calculation e to stabilize the 
required statistical output quantities. 

 
5.  EVALUATION OF UNCERTAINTY AND EXPERIMENTAL DATA 

In order to compare the results of both realized cases 
(calibration in-house and outside the laboratory), we employ 
the evaluation data obtained from the Slovak Institute of 
Metrology (SMU) – see Table 1. These values will be used 
as inputs for evaluating of realization of ITS-90 and 
corresponding uncertainties by Monte Carlo method. 
 
A.  Inputs and considered cases 

The input data are given in Table 1. We consider the 
temperature measurement according to ITS-90 first in the 
calibration laboratory (in-house), then outside the calibration 
laboratory. For temperature measurement, the same TPW 
cell is used as was used for realization of temperature scale. 
In this case, the SPRT resistances at TPW after tin, zinc and 
aluminum are correlated (for sake of simplicity we consider 
the correlation coefficient r = 1). SPRT resistance of 
temperature measurement is considered uncorrelated with 

the other SPRT resistances. SPRT resistances at DFPs are 
considered either uncorrelated (cases a), b)), or correlated 
(cases c), d)). The correlation coefficients among resistances 
at TPW and DFPs are considered uniformly r = 0.4 while 
correlation coefficients among the resistances at DFPs are 
uniformly considered as r = 0.3. 

 
Case a) SPRT is used in-house, resistances at DFPs are 

uncorrelated 

 

8� =
j
kk
kk
l

1 1 1 0 0 0 1 01 1 1 0 0 0 1 01 1 1 0 0 0 1 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 01 1 1 0 0 0 1 00 0 0 0 0 0 0 1m
nn
nn
o

, 

 

 A� = 101�p

j
kk
kk
l

1.61 1.61 1.61 0 0 0 1.61 01.61 1.61 1.61 0 0 0 1.61 01.61 1.61 1.61 0 0 0 1.61 00 0 0 14.8 0 0 0 00 0 0 0 24.8 0 0 00 0 0 0 0 39.9 0 01.61 1.61 1.61 0 0 0 1.61 00 0 0 0 0 0 0 4.00m
nn
nn
o

 

 
Case b) SPRT is used outside calibration laboratory, 

resistances at DFPs are uncorrelated 

 

8� =
j
kk
kk
l

1 1 1 0 0 0 0 01 1 1 0 0 0 0 01 1 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1m
nn
nn
o

, 

 

  A� = 101�p

j
kk
kk
l

1.61 1.61 1.61 0 0 0 0 01.61 1.61 1.61 0 0 0 0 01.61 1.61 1.61 0 0 0 0 00 0 0 14.8 0 0 0 00 0 0 0 24.8 0 0 00 0 0 0 0 39.9 0 00 0 0 0 0 0 1.61 00 0 0 0 0 0 0 4.00m
nn
nn
o

 

 
Case c) SPRT is used in-house, resistances at DFPs are 

correlated 

 

8� =
j
kk
kk
l

1 1 1 0.4 0.4 0.4 1 01 1 1 0.4 0.4 0.4 1 01 1 1 0.4 0.4 0.4 1 00.4 0.4 0.4 1 0.3 0.3 0.4 00.4 0.4 0.4 0.3 1 0.3 0.4 00.4 0.4 0.4 0.3 0.3 1 0.4 01 1 1 0.4 0.4 0.4 1 00 0 0 0 0 0 0 1m
nn
nn
o

,  

 

 A� = 101�p

j
kk
kk
l

1.61 1.61 1.61 1.96 2.53 3.21 1.61 01.61 1.61 1.61 1.96 2.53 3.21 1.61 01.61 1.61 1.61 1.96 2.53 3.21 1.61 01.96 1.96 1.96 14.8 5.75 7.30 1.96 02.53 2.53 2.53 5.75 24.8 9.44 2.53 03.21 3.21 3.21 7.30 9.44 39.9 3.21 01.61 1.61 1.61 1.96 2.53 3.21 1.61 00 0 0 0 0 0 0 4.00m
nn
nn
o
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Case d) SPRT is used outside calibration laboratory, 

resistances at DFPs are correlated 

 

8� =
j
kk
kk
l

1 1 1 0.4 0.4 0.4 0 01 1 1 0.4 0.4 0.4 0 01 1 1 0.4 0.4 0.4 0 00.4 0.4 0.4 1 0.3 0.3 0 00.4 0.4 0.4 0.3 1 0.3 0 00.4 0.4 0.4 0.3 0.3 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1m
nn
nn
o

,  

 

 A� = 101�p

j
kk
kk
l

1.61 1.61 1.61 1.96 2.53 3.21 0 01.61 1.61 1.61 1.96 2.53 3.21 0 01.61 1.61 1.61 1.96 2.53 3.21 0 01.96 1.96 1.96 14.8 5.75 7.30 0 02.53 2.53 2.53 5.75 24.8 9.44 0 03.21 3.21 3.21 7.30 9.44 39.9 0 00 0 0 0 0 0 1.61 00 0 0 0 0 0 0 4.00m
nn
nn
o

 

 
Whereby A� = x�8�x�� and x� is a diagonal matrix of 

dimension 8×8 with diagonal elements: O����� yz�, O����� {z�, O����� |=�, O��yz�, O��{z�,O��|=�, O������, O���. 
The results of simulation by Monte Carlo method and 

GUM are presented in Table 4. The graphical comparison of 
both methods for 66 calibration points within the range (0 ÷ 
660) °C of the ITS-90 is illustrated in Fig.10. 
 

Table 1.  Measured values of SPRT resistances in defining fixed 
point. 

 
Defining fixed 

point 
Resistance 

(Ω) 
Standard uncertainty of 

resistance (Ω) 
Sn 46.9397533 3.85 × 10-5 
Zn 63.7056752 4.98 × 10-5 
Al 83.7191875 6.32 × 10-5 

TPWSn 24.8002001 1.27 × 10-5 
TPWZn 24.8001927 1.27 × 10-5 
TPWAl 24.8001872 1.27 x 10-5 

 
We consider d = 10} Monte Carlo trials. For the output 

quantity � we consider the reference probability f = 0.95 
and the number of significant decimals of the standard 
uncertainty _ghi = 2. Fig.3. shows a histogram of resistance �|=, as given in the example 5.B. 

 

 
 

Fig.3.  Histogram of input resistance. 
 

The coefficients 
, ~, � of deviation function can be 
determined from equation (6), see Fig.5. for their 
calculation. Histograms of coefficients of deviation function 

and the coefficient 
, presented in Fig.4., have similar 
shape. 
 

 
 

Fig.4.  Histogram of the deviation equation for coefficient a. 
 

 
 

Fig.5.  Sub-model for calculation of the coefficients of deviation 
function. 

 

 
 
Fig.6.  Model to calculate temperature and corresponding standard 

uncertainty. 

 
Fig.6. shows the calculation procedure for determination 

of the temperature T, where �� = �����, from equation (2) 

we can determine �� = 
�� − 1� + ~�� − 1�# + ��� − 1�� and from equation (7) we get ��p = � −
�� − 1� + ~�� − 1�# +  ��� − 1��. Histogram of 
estimated temperature t is presented in Fig.8. 
 
B.  Example of calculating the output characteristics for the 

case b) 

Temperature according to ITS-90 and corresponding 
standard uncertainty was determined for data in Table 1. and 
for correlation matrix of resistances for case b, see Table 2. 
 

Table 2.  Evaluation of specific resistance using the law of 
propagation of uncertainty. 

 
Ri (Ω) ti (°C) u(ti) (°C) 

46.55489887 227.75076 5.59864 × 10-4 
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Let’s use the MCM with e = 20 and d = 10}. Based on 
the generated input values for resistances and using 
appropriate relationship, we get estimate of the temperature � (°C). 
 

                           � = �227.7479428⋮227.7533240�                            (11) 

 
The symmetrical reference interval with the specified 

probability for the estimating output quantity � is obtained 
from its generated discrete representation (distribution 
function shown in Fig.7.). To do so, generated values are 
arranged at non-decreasing sequence, using rules listed in 
[3]. According to that procedure, we get the following 
symmetric confidence interval 
 � = QY>hz ; Y><�V = Q227.74966142 ; 227.75185372V     (12) 
 
and following narrowest confidence interval 
 � = QY>hz ; Y><�V = Q227.74966148 ; 227.75185375V     (13) 

 

 
 

Fig.7.  The distribution function of the output temperature. 

 
Statistical characteristics of the resulting estimates are 

calculated from the partial estimates in each sequence Y���, O�Y����. After calculating the last sequence e, it is possible 
to calculate the resulting parameters for estimation. In this 
case  

 Y� = Y = �� ∑ Y�����
� = 227.7507574 °C           (14) 

 

��� = � ����1�� ∑ �Y��� − Y��#��
� = 3.39088 × 101� °C        (15) 

 
The standard uncertainty 
 O��Y� = �� ∑ O�Y������
� = 5.59883 ×101�        (16) 

 

������ = � ����1�� ∑ �O�Y���� − O��Y��#��
� = 2.70938 ×
 101� °C        (17) 

 
The lower end point of the narrowest confidence interval 

of stabilization criteria 

Y�>hz = �� ∑ Y>hz�����
� = �#p �Y>hz��� + Y>hz�#� +. . . +Y>hz�#p�� =  227.7496603  °C         (18) 
 

���D�� = � ����1�� ∑ �Y>hz��� − Y�>hz�#�
#p�
� = 2.31921 ×
 101� °C        (19) 

 
The upper end point of the narrowest confidence interval 

of stabilization criteria 
 Y�><� = �� ∑ Y><������
� = �#p �Y>hz��� + Y>hz�#� +. . . +Y>hz�#p�� =227.7518512  °C        (20) 
 

���DF� = � ����1�� ∑ �Y><���� − Y�><��#�
#p�
� = 2.48407 ×
 101� °C        (21) 

 

 
 

Fig.8.  Histogram of output quantity t. 

 
Numerical tolerance � (see more in 5.C.), expressed by the 

standard uncertainty O��Y�, is 
 � = �# ×101} = 0.000005 = 5×101�          (22) 

 
Stabilization criterion determines whether it is necessary 

to increase the current value of the sequence e>2 calculation 
of Monte Carlo method to the next sequence. This is the 
case if one of values 2��� , 2������, 2���D�� and 2���DF� 

becomes greater than �. If the stabilization criteria are 

successfully met, Y��×��, O�Y��×��� are final statistical 

characteristics and �Y=����×�� ;  Y�hi���×��� are determined from 

all generated values. In the given example, following results 
were obtained by the Monte Carlo method:  

Estimation of the temperature � = 227.75075736 °C, 
standard uncertainty O��� = 5.59884×101� °C, 95 % 
narrowest interval Q227.74966148  ;  227.75185375V and 
95 % symmetric interval Q227.74966142 ; 227.75185372V. 
Statistical characteristic of output variable �, obtained by the 
adaptive Monte Carlo method, is shown in Fig.8. as a graph 
of probability distribution, where the model with one output 
variable � enters the submodel with multiple output 
variables 
, ~, �. 
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C.  Validation of law of propagation of uncertainty 

Calculation should prove if the reference interval obtained 
by law of propagation of uncertainty and by Monte Carlo 
method is identical in certain numerical tolerance. This 
numerical tolerance is assessed in relation to end points of 
the reference interval and it gives expression of standard 
uncertainty O�Y� to the existing number of decimal places. 

Numerical expression of tolerance δ  with an associated 

standard uncertainty O�Y�, as described in section 7.9.2 [4], 

is � = �# ×10� , O�Y� = 56 ∙ 101} °C , 
 = 56 ,   = −5,   
   ⟹      � = �# ∙ 101} = 0,00005 °C  

Absolute differences of limit values of both confidence 
intervals are determined as 
 ¢=�� = £Y¤¥¦ − §p,�} �¤¥¦� − Y=�� �¦¨¦�£           (23) 

 ¢�hi� = £Y¤¥¦ + §p,�} �¤¥¦� − Y�hi� �¦¨¦�£          (24) 

 
Table 4. shows detailed result of uncertainty of 

temperature measurement according to ITS90 for each case 
listed. The maximum number of sequences needed for 
validation of each case was limited to 250. Table 3. contains 
validation results and minimum necessary number of 
sequences for all cases. 

Fig.9. shows the user interface of created application for 
the evaluation and validation of the standard platinum 
resistance thermometer by the Monte Carlo method. 

 
 

Table 3.  Min. number of sequences h (each from M = 105) and 
validation result (yes �, no �). 

 

 

 
 

 
 

Fig.9.  User interface of the application at the end of calculation. 
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Table 4.  Comparison and verification of the law of uncertainty 
propagation through the law of distribution propagation using 
MCM for one value t in different cases (���� = validation successful, 
���� = validation unsuccessful). 
 

Case Method  
/ 

(×105) 

©  
(°C) 

ª�©� 
(°C×10-4) 

 95% coverage 

interval 

Low 

High 

GUF 
validated 

a) GUF - 227.750757 4.24 
227.749925 227.751588 

- 

 MCM 
 shortest 

1 227.750758 4.98 
227.749769 227.751722 

� 

 MCM 
 shortest 250 227.750757 5.60 

227.749657 227.751852 
� 

 MCM 
 symmetric 

227.749660 227.751855 
� 

b) GUF - 227.750757 5.60 
227.749659 227.751854 

- 

 MCM 
 shortest 

1 227.750758 5.60 
227.749672 227.751863 

� 

 MCM 
 shortest 20 227.750757 5.60 

227.749661 227.751854 
� 

 MCM 
 symmetric 

227.749661 227.751854 
� 

c) GUF - 227.750757 4.21 
227.749931 227.751583 

- 

 MCM 
 shortest 

1 227.750758 4.76 
227.749823 227.751687 

� 

 MCM 
 shortest 250 227.750757 4.75 

227.749831 227.751692 
� 

 MCM 
 symmetric 

227.749827 227.751688 
� 

d) GUF - 227.750757 4.75 
227.749826 227.751687 

- 

 MCM 
 shortest 

1 227.750758 4.76 
227.749823 227.751687 

� 

 MCM 
 shortest 34 227.750757 4.75 

227.749829 227.751690 
� 

 MCM 
 symmetric 

227.749827 227.751688 
� 

e) GUF - 227.750757 4.22 
227.749929 227.751585 

- 

 MCM 
 shortest 

1 227.750758 4.98 
227.749769 227.751722 

� 

 MCM 
 shortest 250 227.750757 4.98 

227.749781 227.751732 
� 

 MCM 
 symmetric 

227.749782 227.751733 
� 

f) GUF - 227.750757 4.98 
227.749781 227.751732 

- 

 MCM 
 shortest 

1 227.750758 4.98 
227.749769 227.751722 

� 

 MCM 
 shortest 82 227.750757 4.98 

227.749778  227.751729 
� 

 MCM 
 symmetric 

227.749782 227.751733 
� 

GUM uncertainty framework (GUF) [1], each sequence of MCM consist of 
M = 1×105 trials 

 
6.  CONCLUSIONS 

This paper presents a procedure employing the Monte 
Carlo method for the determination of uncertainties of 
temperature scale. The procedure is based on generating 
pseudo-random numbers for the input SPRT resistances at 
DFPs and at TPW. 

In order to consider the correlations among DFPs, the 
approach of generating pseudo-random numbers from 

multivariate distributions was used. To do so, an 8-
dimensional Gaussian probability distribution was assumed. 
The assumption of Gaussian distribution is quite acceptable, 
given several sources of uncertainty of SPRT resistances at 
DFPs. If the correlations between the SPRT resistances at 
DFPs are negligible, it is possible to adapt the model so that 
the input resistances are uncorrelated and one-dimensional 
distributions for each input resistance can be used. 

Fig.10. shows the course of uncertainty for the entire range 
considered and for each case. The figure compares 
uncertainties of temperatures obtained by using MCM and 
by law of propagation of uncertainty. As already mentioned 
in [16], the uncertainty due to the correlation between 
resistances of SPRT at DFPs can reduce the value of the 
uncertainty of temperature, doing so even in DFPs 
themselves. 

 

 
 

Fig.10.  Comparison of MCM and GUM for different cases, 
illustrated on subrange (0 ÷ 660) °C of ITS-90. 

 
Attention was also paid to validation of the use of law of 

propagation of uncertainty in accordance with the GUM for 
particular conditions. On the basis of validation, we found 
out that for some cases the results given by using MCM and 
law of propagation of uncertainty were not consistent. 
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