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Electroencephalography (EEG) signals are frequently contaminated by ocular, muscle, and cardiac artefacts whose removal normally 
requires manual inspection or the use of reference channels (EOG, EMG, ECG). We present a novel, fully automatic method for the detection 
and removal of ECG artefacts that works without a reference ECG channel. Independent Component Analysis (ICA) is applied to the 
measured data and the independent components are examined for the presence of QRS waveforms using an adaptive threshold-based QRS 
detection algorithm. Detected peaks are subsequently classified by a rule-based classifier as ECG or non-ECG components. Components 
manifesting ECG activity are marked for removal, and then the artefact-free signal is reconstructed by removing these components before 
performing the inverse ICA. The performance of the proposed method is evaluated on a number of EEG datasets and compared to results 
reported in the literature. The average sensitivity of our ECG artefact removal method is above 99 %, which is better than known literature 
results. 
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1.  INTRODUCTION 

Electroencephalography (EEG) is a non-invasive and cost-
effective measurement technology capable of recording the 
bioelectrical activity of the brain with sub-millisecond 
resolution. This makes EEG essential in epilepsy diagnosis, 
cognitive or sensorimotor experiments, where rapid activity 
changes must be examined. Unfortunately, the measured 
EEG signals are regularly contaminated by equipment and 
environmental noise as well as artefacts caused by 
extracerebral physiological sources. Among the latter types, 
ocular, muscle, and cardiac artefacts are especially 
problematic due to their high amplitude and non-periodic 
(ocular, muscle) or quasi-periodic (cardiac) nature; they can 
easily turn valuable EEG measurements unusable. 
Consequently, artefact removal is a key step in every EEG 
processing pipeline.  

Traditional artefact removal requires visual inspection and 
manual rejection of artefact contaminated data segments or 
epochs. This approach is laborious, requires trained 
personnel, can largely reduce the number of usable epochs, 
and prevents the automatic and high-speed analysis of large-
scale EEG experiments. In this paper, we propose a fully 
automatic method for removing ECG artefacts from EEG 
signals. Our approach is based on using Independent 
Component Analysis (ICA) that is able to separate the 
observed signals into statistically independent source 

components, some of which may be attributed to artefact 
sources. ECG-related independent components are then 
classified using an ECG detection method, and these 
identified components are removed from the component set 
to reconstruct the EEG data with ECG artefacts removed. A 
sophisticated classification method ensures that only 
components that reflect real ECG activity are rejected. The 
main advantage of our method is that (i) it is fully automatic, 
(ii) it does not require a reference ECG channel, thus can be 
used in situations where ECG data is not available, and (iii) it 
can also detect and remove ECG artefacts generated by 
pathological cardiac activities which can make the method 
more robust when analysing EEGs of elderly patients. 
 
A.  Related work 

Unlike ocular and muscle artefacts, which can be eliminated 
or at least reduced with careful experiment control – subjects 
asked to minimize movement, refrain from blinking or eye 
movements – involuntary cardiac activity and its effects are 
always present in EEG signals. From the EEG analysis point 
of view, ECG is seen as a quasi-periodic noise, whose 
frequency spectrum overlaps with the EEG spectrum and has 
a relatively high power that causes distortions in the original 
EEG signal [1]. While cardiac artefacts might present only a 
moderate contamination when we are interested in averaged 
event related potentials (ERP), in single-trial analysis, 
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epilepsy related inter-ictal spike analysis or in cardiac cycle-
related EEG averaging, the effect of ECG can distort the 
results. Consequently, ECG artefact removal is crucial in 
producing clean EEG signals, yet, it is a relatively 
underrepresented area in artefact removal research. 

Early ECG removal attempts included subtraction and 
ensemble average subtraction (EAS) [2] methods. Current 
mainstream methods are based on adaptive filtering [3], [4], 
blind source separation (such as ICA) [5], [6] or wavelet 
decomposition [7], [8] methods, although wavelets are 
increasingly more often used in combination with ICA-based 
methods [9], [10]. Since visual inspection is slow, tiring and 
requires an expert assistant, several authors proposed 
methods for semi or fully automatic component detection. 

One semi-automated method using ICA for identifying 
artefact components is presented by Delorme et al. in [11]. 
Various statistical measures (entropy, kurtosis, spatial 
kurtosis) are calculated for each independent component to 
label them automatically as artefact but validation and 
rejection is performed manually. Since the method is based 
on statistical analysis of the components, which does not take 
into account the physiological model of artefacts, the 
performance of the method is not perfect. A similar statistical 
approach is followed in the FASTER [12] and ADJUST [13] 
artefact removal toolboxes. 

The works of Dora and Biswal [7], and Jiang et al. [8] use 
wavelet decomposition-based ECG detection methods. In 
both cases, the Continuous Wavelet Transform is used to 
detect QRS waves in the EEG signal. In the first case, a 
reference ECG channel and linear regression are used to 
remove the detected QRS waves. Reported sensitivity varies 
between 91 and 100 % depending on the input dataset, 
providing lower values in more difficult cases, such as sinus 
arrhythmia. In the second case, no reference channel is used; 
the detected artefact signal (wavelet coefficients) is 
subtracted from the original signal to obtain the clean one. 
Although the reported detection performance of this method 
is above 97.5 %, the method ignores the removal of the P and 
T waves that may also contaminate EEG data. 

Hamaneh et al. [9] use an automatic ICA-based approach. 
A reference spatial distribution template of the ECG artefact 
[14] and a Continuous Wavelet Transform-based periodicity 
test are used in combination to identify ECG independent 
components. If a component shows correlation with the 
spatial template (threshold > 0.6) and passes the wavelet 
periodicity test, it is marked for removal. While the method 
provides good true detection rate (95-99 % depending on the 
ECG contamination rate), the required spatial ECG 
component template has to be created by averaging manually-
selected ECG components of several subjects, which reduces 
the level of possible automation. Mak et al. [10] propose an 
automatic ECG removal method for EMG 
(Electromyography) signal cleaning. Similarly to others, the 
wavelet transform is used to detect R peaks, after which a set 
of decision rules are applied to the candidate component 
(checking heart rate, RR interval, variance of RR interval) to 
detect the ECG component. Although the method is 
developed for cleaning trunk muscle signals instead of EEG, 
the reported excellent ECG detection sensitivity (100 %) 

makes it worth mentioning. Unfortunately, there are no 
testing results for detecting pathological ECG artefacts. 

 

 
 

Fig.1.  Annotated measurement from the MIT-BIH 
Polysomnographic database showing ECG, Blood Pressure and 
EEG signals. Note the pronounced ECG artefact contamination on 
the EEG channel (data record: https://physionet.org – slpdb/slp32). 

 
B.   Independent Component Analysis  

Independent Component Analysis (ICA) was originally 
developed to solve the Blind Source Separation (BSS) 
problem [5] and normally refers to a class of algorithms that 
can recover statistically independent signals (components) 
from a linear mixture, based on higher-order statistics as a 
measure of independence. ICA is considered a robust method 
for identifying and removing artefacts normally found in 
EEG signals.  

A brief formal introduction is as follows. Let us assume that 
we have N statistically independent sources, �����, i = 1, …, 
N. Suppose that the sources cannot be observed directly, only 
via N sensors that obtain N observation signals, x(t). The 
observed signals are mixtures of the original sources. Sensors 
must be spatially separated (e.g. as the electrodes on the 
scalp), as each sensor must measure a mixture different from 
the others. The mixing process than can be described as 

 
  �� = 
��                                      (1) 

 
where 
 is the unknown square mixing matrix. An “unmixing 
matrix” W = 
-1 must be obtained in order to obtain an 
estimate �� of the original source as 
 

�� = ��� .                                     (2) 
 

The following restrictions apply to ICA in order to produce 
a solution: (i) the sources must be statistically independent, 
(ii) the sources cannot have Gaussian distribution, and (iii) 
the mixing matrix must be invertible. The estimation of �� 
requires pre-processing steps (dimensionality reduction, 
centering, and uncorrelation). 

The ICA method has few important limitations, however. 
The order and the energy of the components can be arbitrary; 
these are referred to as permutation and scale ambiguity, 
respectively. A consequence of these ambiguities is that most 
often ICA components are examined manually, and 
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component types (EOG, ECG, EMG, etc.) are identified 
visually. 

Several ICA algorithms (e.g. Infomax ICA, Fast-ICA, 
JADE, SOBI) exist that differ, e.g. in the way independence 
is computed, in their convergence properties, the quality of 
source separation or their runtime complexity [15]. For a 
more detailed description of the theoretical foundations of 
ICA and the various ICA algorithm variants, the interested 
reader is referred to the literature [5], [6], [15]-[19]. 

 
2.  SUBJECT & METHODS 
A.  Materials 

Multiple EEG datasets were selected for testing our method. 
Public EEG datasets used in similar studies [7], [8] were 
included for performance comparison purposes. We have also 
used resting state EEG data measured by our group on healthy 
volunteers who all had given their written consent in 
participating in the experiments. 

 
PhysioNet EEG datasets  

a)  The MIT-BIH Arrhythmia Database [20] contains 48 
half-hour excerpts of two-channel ambulatory ECG 
recordings recorded at the Beth Israel Hospital in Boston. 
Sampling frequency is 360 Hz. 

b)  The MIT-BIH Polysomnographic Database [20]-[22] 
contains sleep measurements of varying duration (ranging 
from 1:17 to 6:30 hours) from 16 patients monitored in the 
Beth Israel Hospital Sleep Laboratory in Boston. The datasets 
contain one EEG channel. The sampling rate of the 
measurements is 250 Hz. 

c)  The CAP Sleep Database is a collection of 108 
polysomnographic recordings measured at the Sleep 
Disorders Center of the Ospedale Maggiore of Parma, Italy 
[20], [21]. Each dataset contains at least three EEG channels 
as well as ECG, EOG, respiration, etc. physiological signals. 
The sampling rate of the measurements is 250 Hz. 

 
Resting state EEG dataset 

Closed and open eye resting state EEG data were recorded 
from 61 adult volunteers (males and females, between ages 
17 and 35) of 2-3 minute’s duration. During the experiment, 
subjects had to sit and relax in a silent room. Data was 
recorded using a Biosemi ActiveTwo EEG system 
(fs = 2048 Hz) using the 128-channel ABC radial electrode 
layout. The volunteers gave their written consent to 
participating in the experiments. 

 
Analysis software 

All analyses were carried out in the Fieldtrip toolbox [22].  
 

B.  Methods 
The flow chart of the proposed method that includes signal 

pre-processing, independent component analysis and 
subsequently, component checks for ECG presence and 
artefact removal is shown in Fig.2. Each step of the method 
is described in detail in the following subsections. 

Pre-processing  
Signals of each dataset were filtered with a 1 – 47 Hz 4th-

order zero-phase Butterworth bandpass filter to remove the 
DC component, slow drifts, line noise and unwanted high-
frequency components. The resting state measurements were 
then downsampled to fs = 256 Hz. This optional step was 
chosen in order to reduce the execution time of the subsequent 
Independent Component Analysis. Average reference was 
used for the resting state dataset. 

 

 
 

Fig.2.  The flow chart of the ECG artefact removal method. 
 

Independent component analysis 
The pre-processed signals were partitioned into 20-second 

long non-overlapping segments. The Infomax ICA algorithm 
was performed on each segment to generate components 
 
ECG component detection 

The output of the ICA algorithm is a set of independent 
components, ci, i = 1, …, N, where N is the number of 
components that is also equal to the number of EEG channels. 
Since the order of the components produced by the ICA 
algorithm is arbitrary, we cannot pre-select components 
based on a-priori information; each component has to be 
examined for ECG-like activity. The underlying assumption 
is that an ECG independent component is similar to a real 
ECG signal in terms of its QRS interval, general waveform 
morphology and periodicity (see Fig.3. as an example). Since 
the most characteristic feature of an ECG signal is the QRS 
complex, the presence of this is used for identifying an ECG 
artefact component.  
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The complete ECG component detection hence involves the 
following two main stages: first, an automatic QRS detection 
is performed on an independent component, ci, and then an 
ECG-cycle classifier decides whether the given component is 
in fact an ECG artefact component. These stages include 
several internal processing steps which we describe in detail 
in the following paragraphs. 
 
Step 1 – Amplitude range transformation  

Since the output components of the ICA algorithm may 
have arbitrary scale and polarity, the first step is to scale the 
component signal into the typical amplitude range of the ECG 
signals. 

 

 
 

Fig.3.  Input signals of a 128-channel EEG signal data segment 
contaminated with artefacts (a), and a subset of the resulting 
independent components representing EEG signals (ica002, 
ica004), ocular (ica001), and cardiac artefacts (ica003) (b). 
 

The component signal, ci, is segmented into K consecutive, 
non-overlapping, two-second data segments, sj, j = 1, …, K. 
Then, the local maximum, �� = max

��∈��
����, is calculated in 

each segment, where yk is the vector of samples of segment 
sj, k = 1, …, L, and L = 2fs. Once the local maxima of all 
segments are determined, their median is calculated, 
med = median(mj), and finally, the component signal is 

transformed into the ±700 µV range that is required for the 
QRS detection algorithm: 

 

��  =  
700
���

�� . 

 
Step 2 – QRS detection  

The next step of the method is scanning the independent 
components for the presence of ECG waveforms, i.e. QRS 
complexes. In our example in Fig. 3, component ica003 
shows ECG features. The QRS detection step uses an 
adaptive threshold-based R-peak detection algorithm 
developed by Christov [23]. The algorithm operates on the 
derivative of the given component signal c(t). Let y(t) denote 
the absolute value of the derivate, 

 
 ���� = |!"���| # $%��&'�(%��('�

)'
$ = |%�*+(%�,+|

)∆�
,        (3) 

 
where !�&.and !�(.are the (k+1)th and (k-1)th samples of the 
given data segment sj of the current component.  

A combined adaptive threshold function 
 
                        /01 = / 2 0 2 1,                               (4) 

 
is calculated for each time instant using: (i) M (the steep slope 
threshold), (ii) F (the integrative threshold for high frequency 
signal components, and (iii) R (the beat expectation 
threshold). The exact rules for calculating the adaptive 
threshold can be found in [23]. 
 

 
 
Fig.4.  Successive steps of the ECG artefact detection process; 
a) ECG independent component, b) absolute value of the 
component, c) absolute value of the component derivative and 
the MFR adaptive threshold (solid red line), d) QRS peaks 
detected.  
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Each derivate sample yk is compared to the MFR threshold, 
and the position of the first sample for which the condition 
yk > MRF holds is stored as an R-peak position. Since the 
algorithm may not always pick the true position of the R-
peak, a local peak search is performed subsequently within 
the neighbourhood of each detected position to find the global 
maximum in the window centred on the initial R-peak 
position. The positions of the final detected peaks are then 
stored for the next (classification) stage of our method. 

 
Step 3 – Cardiac cycle classification  

The goal of the classification stage is to verify whether the 
detected peaks can be attributed to cardiac activity. If the 
peaks do not show characteristic ECG properties (periodicity, 
QRS distance and amplitude), the component is labelled as a 
non-ECG component. The details of the classification process 
are described below. 

1)  The first ECG detection criterion is related to the 
number of detected peaks; if it is outside the normal human 
heart rate range (<30 or >250 beats/minute), the algorithm 
skips the component (i.e. marks it as non-ECG). 

2)  The next step is the classification of the cardiac cycles, 
hk, into a majority heart cycle class and possible extra classes 
(e.g. low-quality majority cycles, extreme-amplitude 
artefacts). Using the detected R-peak positions as 
synchronization points, an average ECG waveform, havg, is 
generated by defining a -300 ms to 400 ms window around 
each candidate peak, and the corresponding samples are 
averaged point-by-point. The generated averaged ECG will 
serve as a reference waveform in the classification of each 
cardiac cycle. 

After this step, the Pearson-correlation is calculated 
between the average baseline ECG, 3456

789, and each interval 
waveform, 3�

789, using a narrower QRS [-60ms, 80ms] 
window. If the correlation and the amplitude of the waveform 
are above the pre-determined threshold values, the interval is 
assigned to the majority ECG class CECG. The following 
formula defines the rules more formally: 
 
:;<= = {3�|? ≤ A, corr�3456

789 , 3�
789� ≥ 0.7 and  

| maxI|3456
789|J − maxI|3�

789|J | < 0.5 ∗ maxI|3456
789|J}    (5) 

 
where 3� is the sample vector of the kth detected cardiac cycle 
in the ICA component segment under test, H is the number of 
detected cycles, 3456

789is the vector of samples of the averaged 
QRS cycles [-60 ms, 80 ms], and 3�

789 is the vector 
corresponding to the same window of cardiac cycle k, k = 1, 
…, H. 

3)  Next, the majority class is examined for consistency and 
beat periodicity. If there are too few ECG cycles in the 
majority class (less than 10 % of the total number of detected 
cycles) or the detected heart rate in the class is outside the 
valid  human  heart rate (<30 or >250 beats/minute), the 
component is not considered as ECG artefact. 

4)  If the majority class test succeeds, the final verification 
step is based on the average QRS interval. ECG cycles in the 
majority class are averaged, then the QRS interval is 

calculated after locating the QRS onset and offset of the 
averaged cycle. If the QRS interval is too narrow or too wide 
(<30 or >200 ms), the majority class – and consequently the 
current component – is not classified as an ECG artefact. The 
component is marked as ECG if and only if it was not rejected 
in any of the preceding steps. 

Since our method relies heavily on cycle averaging, it is 
crucial to use a sufficient number of cycles in order to obtain 
a high-quality averaged cycle. We recommend the use of 
segments with duration of 20 seconds or more. 
 
Component removal and inverse ICA 

The final step of the method is the reconstruction of the 
signal from its components. The rejected independent 
components are removed from the component set, �̂, creating 
an artefact free set, �̂4Q, by zeroing out the rejected 
component samples, �̂ → �̂4Q, then the estimate of the cleaned 
observed EEG signal can be computed as  

 
x� = S(.�̂�

4Q .                                 (6) 
 

Once the ECG classifier identifies an ECG independent 
component, the entire ECG component waveform (not just 
the QRS complex) is rejected from the set of components.  
Fig.5. illustrates the result of the cleaning method, whereas 
Fig.6. compares the original, contaminated channel A13 of 
Fig.3.a) with the one after artefact removal. Note how the 
ECG peaks are removed from the signal without introducing 
any additional distortion. A different view of the cleaning 
effect is shown in Fig.7., which shows the scalp potential map 
of a QRS-peak interval before and after artefact removal. The 
original contaminated map clearly shows the typical spatial 
distribution pattern of an ECG artefact. The artefact free map 
illustrates to what extent the ECG artefact concealed the 
underlying resting state activity. 

 

 
 
Fig.5.  EEG signals with the ECG artefact removed. Compare 
channels A12-A15 with the contaminated originals in Fig.3.a).  
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Fig.6.  The original (black) and cleaned (red) samples of 
channel A13 of Fig.3.a). Note the four removed QRS peaks.  
 
 

 
 

Fig.7.  The scalp potential distribution of the averaged QRS peak 
before (left) and after (right) ECG artefact removal. Note the 
superimposed left-occipital–right-frontal ECG potential field 
(marked by the black arrows) disappearing after cleaning. 
 
 
3.  RESULTS 

Our proposed method was tested on publicly available 
datasets and on resting state EEG data obtained in our 
laboratory. The public datasets we selected are the MIT-BIH 
Arrhythmia, the MIT-BIH Polysomnographic, and the CAP 
Sleep datasets. These allow our method to be compared with 
results reported in the literature [7], [8]. The outcome of these 
comparisons can be found in Table 1. to Table 3.  

The overall performance of our proposed method depends 
on the performance of the QRS detector and the ECG 
component classifier. Both are examined in terms of their 
sensitivity, Sen, and specificity, Spe. 

 
A.  Artefact detection performance metrics  

The sensitivity of the QRS detector is calculated as Sen =
VW/�VW 2 0Y�, where TP is the number of true positive 
(accurately detected), whereas FN is the number of false 
negative (missed) QRS peaks. We cannot use the standard 
formula for the Specificity,  Spe = VY/�VY 2 0W� for the 
QRS detection tests, as each input signal contained QRS 
complexes, consequently, the true negative case TN is 
undefined. Instead, we use the alternative formulation Spe* 
= VW/�VW 2 0W� as suggested in [23]. 

The performance of the classifier is also measured by the 
sensitivity and specificity. In this case, TP is the number of 
true ECG independent component segments, TN is the 
number of non-ECG component segments, FN is the number 
of true ECG component segments rejected by the classifier 
rules (amplitude, periodicity, QRS interval, number of cycles 

in the majority beat class), and FP is the number of false 
positive segments (falsely detected QRS segments). The 
specificity of the component classifier is calculated using the 
traditional formula, Spe = VY/�VY 2 0W�. 

 
B.  QRS detector performance  

Table 1. shows the results of our QRS detection method 
performed on ECG signals of the MIT-BIH Arrhythmia 
database using one and five-minute long data segments.  
 

Table 1.  QRS detection sensitivity and specificity, proposed 
method (pm, 1- and 5-minute segments) vs literature:  

MIT-BIH Arrhythmia dataset – ECG signal. 
 

Data
set 

Sen (%) Spe* (%) 
Dora 

[7] 
pm 
1m  

pm 
5m 

pm 
1m 

pm 
5m 

100m 97.1 100.0 100.0 100.0 100.0 
101m 100.0 100.0 99.7 100.0 99.7 
103m 100.0 100.0 100.0 100.0 100.0 
106m 91.5 100.0 96.6 100.0 96.7 
107m 100.0 100.0 100.0 100.0 100.0 
117m 100.0 100.0 100.0 100.0 100.0 
118m 100.0 100.0 100.0 100.0 100.0 
208m 89.4 98.9 97.5 99.0 97.5 
223m 92.2 100.0 100.0 100.0 100.0 
231m 100.0 100.0 99.3 100.0 99.3 
avg. 97.0 99.9 99.3 99.8 99.0 

 
Table 2. and Table 3. show the results of our QRS detection 

method applied to the MIT-BIH Polysomnographic and the 
CAP sleep datasets. For both datasets, we ran the Infomax 
ICA to calculate the independent components. From these, 
we manually selected the ECG component and used this as 
the input to the QRS detector.  
 

Table 2.  QRS detection sensitivity and specificity, proposed 
method (pm, 1-minute segments) vs literature:  

MIT-BIH Polysomnographic Dataset – EEG signal. 
 

Dataset 
Sen (%) Spe* 

(%) 
Dora [7] Jiang [8] pm pm 

slp01a 98.5 98.9 100.0 100.0 
slp02b 95.2 98.1 100.0 100.0 
slp03 97.1 96.3 100.0 100.0 
slp16 100.0 - 100.0 100.0 
slp32 100.0 - 100.0 100.0 
slp41 100.0 - 100.0 100.0 
slp59 100.0 - 100.0 100.0 
slp60 100.0 - 100.0 100.0 
slp66 100.0 - 100.0 100.0 
slp67x 97.9 - 100.0 100.0 

average 98.7 97.8 100.0 100.0 
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Table 3.  QRS detection sensitivity and specificity, proposed 
method (pm, 1-minute segments) vs literature:  

CAP Sleep Dataset – EEG signal. 
 

 Sen (%) Spe* (%) 
Dataset Dora [7] pm pm 

ins_2  100.0 100.0 100.0 
ins_3 100.0 98.6 100.0 
ins_5 98.9 100.0 100.0 

n2 98.7 100.0 100.0 
n8 98.4 100.0 100.0 

nfle15 98.6 100.0 98.6 
nfle35 96.5 100.0 100.0 
plm3 96.7 100.0 100.0 
plm4 97.0 100.0 100.0 
plm9 100.0 100.0 100.0 

average 98.5 99.9 99.9 
 

C.  ECG component classifier performance   
This section shows the results of our proposed ECG 

component classification method on an arbitrary EEG dataset 
in automatic mode. For the tests, seven subjects were selected 
at random from a 61-subject 128-channel closed-eye resting 
state EEG dataset. 

Table 4. lists the performance results obtained on the 
recordings. For subjects s1 and s2, no sensitivity results could 
be calculated, since no ECG contamination was detectable in 
the datasets. Correctly, our method did not find any QRS 
complexes in the components, and consequently none of the 
independent components were classified as ECG, meaning 
that VW = 0W = 0. 
 
Table 4.  The ECG artefact detection performance of our proposed 

method on 128-channel resting state EEG. 
 

Dataset 

Proposed method 
QRS 

detection 
Sen (%) 

Classifier 
Sen (%) 

Classifier 
Spe (%) 

s1 N/A N/A 100.00 
s2 N/A N/A 100.00 
s3 99.11 100.00 100.00 
s4 100.00 100.00 100.00 

s11 99.61 100.00 100.00 
s24 99.40 100.00 100.00 
s25 92.81 100.00 99.61 

average 98.19 100.00 99.94 
 
4.  CONCLUSIONS 

ECG artefacts present in EEG signals can lead to analysis 
errors in single-trial experiments, epileptiform signal or 
cardiac cycle-related brain activity analysis. This paper 
proposed a fully automatic ECG artefact removal method 
working without human assistance or reference ECG channel, 
which can be used in high-throughput, high-speed EEG 
analysis, continuous monitoring or clinical diagnostic 
systems. 

The acquired EEG signals are subjected to independent 
component analysis and the resulting independent 
components are examined for cardiac activity characteristics. 
The applied adaptive threshold-based QRS detector and 
subsequent rule-based cardiac cycle classifier identify ECG 
activity and mark component segments for rejection with 
high reliability.  

In QRS detection, the proposed method achieves sensitivity 
above 99.3 % on the PhysioNet datasets (specificity > 99 %), 
higher than all known automatic methods reported in 
literature. For our own high-density resting state EEG data, 
the QRS detection sensitivity is above 98.1 %, however, the 
sensitivity of the ECG component classifier (the complete 
process) is 100 %. This is due to the fact that the classifier 
does not need all the component QRS peaks to identify a 
component segment as ECG. 

The significance of our method is that due to its excellent 
sensitivity and specificity, it can be used reliably for 
automatic, unsupervised artefact removal, where similar 
reported methods might incorrectly remove non-artefacts or 
leave contaminating components in the dataset. 

We hope that our method advances the current practice of 
ECG artefact removal, and due to its clear advantages, i.e. the 
fully automatic operation, better sensitivity than previous 
approaches, and the capability of detecting pathological ECG 
waveforms, such as frequent ventricular ectopic beats or 
bundle branch blocks, it will help practitioners in producing 
more accurate analysis results. 
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