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In digital volume correlation (DVC), random image noise in volumetric images leads to increased systematic error and random error in the 

displacements measured by subvoxel registration algorithms. Previous studies in DIC have shown that adopting low-pass pre-filtering to the 

images prior to the correlation analysis can effectively mitigate the systematic error associated with the classical forward additive Newton-

Raphson (FA-NR) algorithm. However, the effect of low-pass pre-filtering on the state-of-the-art inverse compositional Gauss-Newton (IC-

GN) algorithm has not been investigated so far. In this work, we focus on the effect of low-pass pre-filtering on two mainstream subvoxel 

registration algorithms (i.e., 3D FA-NR algorithm and 3D IC-GN algorithm) used in DVC. Basic principles and theoretical error analyses 

of the two algorithms are described first. Then, based on numerical experiments with precisely controlled subvoxel displacements and noise 

levels, the influences of image noise on the displacements measured by two subvoxel algorithms are examined. Further, the effects of low-

pass pre-filtering on these two subvoxel algorithms are examined for simulated image sets with different noise levels and deformation modes. 

The results show that the low-pass pre-filtering can effectively suppress the systematic errors for the 3D FA-NR algorithm, which is 

consistent with the previously drawn conclusion in DIC. On the contrary, different form the 3D FA-NR algorithm, the 3D IC-GN algorithm 

itself can reduce the influence of  image noise, and the effect of low-pass pre-filtering on it is not so obvious as on 3D FA-NR algorithm.  
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1.  INTRODUCTION 

Digital volume correlation (DVC) [1], [2], combined with 

advanced volumetric imaging facilities, has been established 

as a powerful technique for retrieving full-field internal 

deformation in opaque materials and biological tissues. Since 

it was first introduced by Bay [1] in 1999 to obtain the 

continuum-level displacement and strain fields in a trabecular 

bone, DVC has been increasingly used for characterizing the 

interior kinematic fields of various materials and structures 

[3]-[9]. The internal deformation in response to external 

loading obtained by DVC helps to understand the mechanical 

behaviors of materials and bridge the gap among theoretical 

prediction, numerical simulation, and experiments. 

Like digital image correlation (DIC), the 2D counterpart of 

DVC [10], [11], the measurement accuracy and efficiency of 

DVC are dependent on the subvoxel registration algorithm. 

In the literature, different subpixel/subvoxel registration 

algorithms have been developed [1], [12], [13]. To find a 

better subpixel registration algorithm, Pan et al. [15] 

compared the performance of three commonly used 

registration algorithms (i.e., peak-finding algorithm, 

gradient-based algorithm, and Newton–Raphson (NR) 

algorithm),  and  found  that  the  NR algorithm,  an iterative 

spatial domain cross-correlation algorithm,  is more accurate 

and stable. After that, to further improve the performance of 

the classic NR algorithm, continuous refinements have been 

made to reduce its complexity, improve its robustness and 

extend its applicability [16], [17]. The NR algorithm has also 

been extended to DVC for accurate subvoxel registration 

[18], [19]. Although being the most widely used and the most 

accurate algorithm for subpixel/subvoxel motion estimation, 

one significant drawback of the NR algorithm is its huge 

computational cost. To cope with this drawback, Pan et al. 

[20] proposed an advanced inverse-compositional Gauss-

Newton (IC-GN) algorithm that can eliminate redundant 

calculations inherent in the NR algorithm. IC-GN algorithm 

is not only more computationally efficient than the NR 

algorithm without any loss of its measurement accuracy, but 

it also offers better noise-proof robustness performance [21], 

[22]. Due to these merits, the IC-GN algorithm has been 

considered as a gold standard and milestone algorithm for 

subpixel/subvoxel registration in practical DIC/DVC 

applications [23], [24]. 

In DIC/DVC, the systematic errors in measured 

displacements related to the subpixel/subvoxel registration 

algorithm can be classified into bias error associated with 
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undermatched shape functions [25], imperfect interpolation 

and random noise [26]-[29]. To mitigate the systematic errors 

arisen from the use of undermatched shape functions, several 

effective approaches, including a sophisticated self-adaptive 

DVC approach that can adaptively determine the optimal 

subvolume size and shape functions at each calculation point, 

and quasi-Gauss DIC/DVC method [32], have been proposed 

[30], [31]. Also, to decrease the interpolation bias error and 

noise-induced bias error, a simple and effective approach 

applying a low-pass prefiltering prior to correlation analysis, 

was also presented. It is proved that the low-pass pre-filtering 

can effectively suppress the high-frequency image contents, 

and thus contribute to mitigating the negative effect of the 

imperfect intensity interpolator and the image noise. 

Specifically, Schreier et al. [26] adopted a 3×3 binomial filter 

on simulated noiseless speckle images and achieved a 

systematic error reduction in the displacements measured by 

DIC. Pan [29] demonstrated that the use of a 5×5 Gaussian 

filter prior to DIC analysis can reduce the bias error in 

measured displacement to a negligible degree, even though a 

simple bicubic interpolation is used. However, the studies 

about the effect of low-pass pre-filtering on DIC 

measurements are mainly based on the classic NR algorithm 

with forward additive matching strategy. 

Despite its simplicity and effectiveness, there are still two 

unsolved problems regarding the use of the low-pass 

prefiltering approach in DIC/DVC analyses as pointed out in 

[29]. First, for the advanced DIC algorithm using inverse 

compositional matching strategy and iterative Gauss-Newton 

(i.e., IC-GN) algorithm [20], the effect of the low-pass 

filtering needs further in-depth investigation. In fact, although 

these two algorithms (i.e., FA-NR and IC-GN) are equivalent 

in principle, they are different in the implementation process. 

The IC-GN algorithm only needs to interpolate the gray 

values at subpixel locations, which is different from the FA-

NR algorithm needing to interpolate gray values and gray 

value gradients at subpixel locations. For instance, Su et al. 

[33] found that the relative difference of systematic error 

between the FA-NR algorithm and the IC-GN algorithm can 

exceed 80 %. Thus, the results applicable to the FA-NR 

algorithm may not be simply extended to the IC-GN 

algorithm. Second, concerning the DVC for 3D internal 

displacement measurement, the iterative algorithm using 

tricubic interpolation gives rise to periodically subvoxel 

position-dependent bias error [19], [34]. Particularly, 

volumetric images generated by many 3D imaging techniques 

(e.g., X-ray CT scanner) have miscellaneous and higher noise 

levels than optical images captured by digital cameras [35]. 

Therefore, attention should be paid to the effect of low-pass 

pre-filtering on DVC when using different subvoxel 

registration algorithms (i.e., 3D FA-NR algorithm and 3D IC-

GN algorithm). 

To address these two issues, we investigate the effect of 

low-pass pre-filtering on the 3D FA-NR algorithm and the 3D 

IC-GN algorithm used. In the following, we first provide a 

brief introduction of the two algorithms and point out their 

differences in the calculation process and noise robustness 

performance. Then, the influence of noise on the 

measurement accuracy of the two algorithms is analyzed. 

Finally, we study the effectiveness of low-pass pre-filtering 

on these two subvoxel registration algorithms using simulated 

image sets. 

 

2.  BASIC PRINCIPLES AND THEORETICAL ERROR ANALYSES 

OF TWO SUBVOXEL REGISTRATION ALGORITHMS 

2.1.  Brief introduction of two subvoxel registration 

algorithms 

Fig.1. shows the schematics of the 3D FA-NR algorithm 

and the 3D IC-GN algorithm, which both aim to optimize the 

zero-mean normalized sum of square difference (ZNSSD) 

criterion but with different matching strategies. As shown, 

although it has been proved by Baker and Mattews [36] that 

these two algorithms are equivalent in principle, the Hessian 

matrix (i.e., H12×12) in the 3D FA-NR algorithm has to be 

recalculated in each  iteration, while the Hessian matrix in the 

3D IC-GN algorithm remains constant (does not need to be 

recalculated) during the iteration. Therefore, compared with  

the 3D  FA-NR algorithm, the 3D IC-GN algorithm can 

achieve a faster calculation speed. Besides, there appear two 

other main differences during the practical implementations 

of these two algorithms. The first difference is the mapping 

strategy, the 3D FA-NR algorithm employs a forward 

matching strategy, in which the incremental deformation 

vector ∆p  of  target  subvolume  obtained  by  optimization 

is  directly  added  to the current deformation vector p of 

target  subvolume  to  obtain  the  new  deformation  vector p. 

 
3D FA-NR algorithm 

 
 

3D IC-GN algorithm 

 
 

Fig.1.  Schematic flow charts  of the 3D FA-NR algorithm and the 

3D IC-GN algorithm. 
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By comparison, the 3D IC-GN algorithm adopts an inverse 

mapping strategy, where the incremental affine warp function 

( ; )∆W ξ p of reference subvolume obtained by optimization 

is inverted and composed with the current warp function

( ; )W ξ p of target subvolume to obtain the new warp function

( ; )W ξ p  . The other difference is the way to calculate the 

intensities and intensity gradients at subvoxel locations. In the 

3D FA-NR algorithm, both the intensities ( )g x and intensity 

gradients ( )g∇ x at subvoxel locations need to be provided by 

an interpolation method. By contrast, in the 3D IC-GN 

algorithm, only the intensity ( )g x at subvoxel locations must 

be determined by an interpolation approach and the intensity 

gradients ( )f∇ x  at the integer voxel location can be 

calculated by using the relatively simple and accurate Barron 

gradient operator [15]. 

 

2.2.  Theoretical error analysis of two algorithms 

In real experiments, the (volume) image inevitably contains 

random noise. Therefore, in the DIC/DVC analysis, the 

subpixel/subvoxel registration algorithm should have good 

noise resistibility to ensure the measurement accuracy of the 

displacement. Since Pan et al. [22] have given the detailed 

theoretical error analyses of the two algorithms in DIC, we 

will not repeat it in the DVC and only give the results of [22] 

for short. Table 1. lists the expectation and variance of the 

displacement measurement error
e

u  of the two algorithms in 

the case of translation along the x-axis. xf  and xg  are the 

intensity gradients of noiseless reference subvolume and 

target subvolume, xg ′ is the intensity gradient of noise target 

subvolume, σ is the standard deviation of the white Gaussian 

noise of reference and deformed images, W  is the weight 

function at certain interpolation position, h  is the gray 

interpolation error. 

 
Table 1.  Theoretical results of measured displacements [22]. 
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Parameters IC-GN algorithm 
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It is seen that the systematic error of the FA-NR algorithm 

is a sum of two bias terms: interpolation-induced bias error 

(
2

( )

x

x

g h

g

⋅

′
∑∑
∑∑

 ) and noise-induced bias error (
2

2
( )x

W

g

σ
′

∑∑
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 ). By 

comparison, the systematic error of the IC-GN algorithm only 

contains one bias term: interpolation-induced bias error 

(
2

( )

x

x

f h

f

⋅∑∑
∑∑

). The main reason is that noise-induced bias error 

in the IC-GN algorithm can be erased by using the Barron 

gray operator to calculate the intensity gradient. Meanwhile, 

it also can be noticed that the variances of the two algorithms 

are similar, namely (
2

2

2

( )xg

σ
′∑∑

 and
2

2

2

( )xf

σ

∑∑
). 

 

3.  THE INFLUENCE OF IMAGE NOISE ON TWO SUBVOXEL 

REGISTRATION ALGORITHMS 

In real experiments, the measurement accuracy of DVC is 

influenced by many unfavorable factors. To eliminate the 

possible errors caused by the volume image acquisition 

system (e.g., self-heating effect of x-ray CT scanner [37]), 

imperfect loading, etc., numerical experiments are utilized in 

this study to analyze the influence of noise on subvoxel 

registration algorithm. 

 

3.1.  Numerical translation experiments 

In the experiment, five sets of simulated volume images 

with precisely controlled subvoxel translation are used. The 

reference volume image (200×200×200 voxels, 256 gray 

levels) is generated using the method in [19]. Fig.2. shows the 

reference speckle pattern volume image and its gray 

distribution histogram. The deformed volume images are 

translated using a Fourier filter in the frequency domain [25]. 

Each image set contains a reference volume image and 20 

deformed volume images with the subvoxel translation 

displacement ranging from 0.05 voxel to 1.00 voxel with the 

increment of 0.05 voxel in the x-direction. The first image set 

is noiseless. The other four image sets are generated by 

adding the white Gaussian noise with zero mean and different 

standard deviations (varying from 1 to 4 gray value) to all 21 

volume images in the first image set to simulate the image 

noise in real experiments. 

 

    
 
Fig.2.  Reference volume image and its histogram: computer-

simulated 3D speckle patterns with a size of 200×200×200 voxels, 

consisting of 96000 speckle granules. 

 
The displacements are computed at regularly distributed 

35937(=33×33×33) points using the 3D FA-NR algorithm/3D 

IC-GN algorithm with the ZNSSD correlation criterion and 

zero-order shape function. The subvolume size and step size 
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are 21×21×21 voxels and 5 voxels, respectively. To 

quantitatively assess the measured displacements, the mean 

bias error eu (i.e., systematic error) and standard deviation 

error (SD) σu (i.e., random error) are chosen. Meanwhile, 

although the low-pass pre-filtering for the image reduces the 

systematic error, it also increases the random error of the 

displacement measurement results. To evaluate the effect of 

low-pass pre-filtering more comprehensively, the root mean 

square error (RMSE) is adopted to characterize the total error 

of measurement. 

 

( )

imp

2

1

2 2

1

1

RMSE

u

N

u i

i

u u

e u u

u u
N

e

σ

σ

=

 = −



= −
−


= +

∑               (1) 

 

where
1

1 N

i

i

u u
N =

= ∑  is the mean value of the N (=35937) 

measured displacements and uimp represents the imposed 

subvoxel displacement.  

 
3.2.  The influence of image noise 

Fig.3. shows the mean bias errors and SD errors as a 

function of the actual pre-imposed subvoxel displacement of 

two algorithms for noiseless images (i.e., first image set). It 

is observed that: (1) the mean bias errors of the two 

algorithms show sinusoidal fluctuations with a period of 1 

voxel, which attributes to the interpolation-induced error [26]; 

(2) the amplitude of mean bias error in the 3D IC-GN 

algorithm is slightly smaller than in the 3D FA-NR algorithm. 

Specifically, the maximum absolute value of mean bias error 

in the 3D IC-GN algorithm is 8.75×10-4 voxel, while the 

maximum absolute value in the 3D FA-NR algorithm is 

1.27×10-3 voxel; (3) the SD error curve of the 3D IC-GN 

algorithm almost coincides with that of the 3D FA-NR 

algorithm, and their maximum values are 4.92×10-4 voxel. 

Through the above analysis, we can get the following 

conclusion: when the volume images are noiseless, the 

systematic error difference of two algorithms is relatively 

small, and the two algorithms almost produce the same 

random error. 

 

  
 

Fig.3.  Displacement errors of the 3D FA-NR algorithm and the 3D 

IC-GN algorithm for noiseless volume images: (left) mean bias 

error, (right) SD error. 

Fig.4. gives the measurement results of two algorithms 

under different levels of white Gaussian noise. In this 

situation, the systematic error includes two aspects: 

interpolation-induced error and noise-induced bias error. 

From Fig.4., it is seen that: (1) the mean bias error of the 3D 

FA-NR algorithm increases sharply with the increase of noise, 

for instance, when the standard deviation of added noise 

arises from 1 gray value to 4 gray value, the mean bias error 

has risen almost tenfold; (2) when the different levels of noise 

are added to the images, the mean bias error of the 3D IC-GN 

algorithm changes within a narrow range; (3) with the 

increase of noise level, the SD errors of the two algorithms 

also increase, for instance, when the added noise level 

increases from 1 gray value to 2 gray value, the SD error of 

the 3D IC-GN algorithm at 0.25 voxel displacement increases 

from 1.8 ×10-3 voxel to 3.2 ×10-3 voxel; (4) under the same 

noise, the mean bias error and SD error of the 3D IC-GN 

algorithm are smaller than the 3D FA-NR algorithm, and the 

more noise, the more difference. 

 
                     3D FA-NR                                                          3D IC-GN 

 

  
 

Fig.4.  Displacement errors for image sets with various noise levels: 

(left) 3D FA-NR algorithm, (right) 3D IC-GN algorithm. 

 
In summary, it can be concluded that the noise has little 

influence on the measurement accuracy of the 3D IC-GN 

algorithm, while it has a significant effect on the 3D FA-NR 

algorithm. The SD errors of the two algorithms both increase 

with noise, which is consistent with the existing theoretical 

research results [22]. 

 

4.  THE EFFECTIVENESS ANALYSIS OF LOW-PASS PRE-

FILTERING ON TWO SUBVOXEL REGISTRATION ALGORITHMS 

Related researches indicate that prior to the DIC analysis, 

the low-pass pre-filtering can effectively reduce noise 

influence. Reference [26] showed that applying a binomial 

filter [0.25, 0.5, 0.25] prior to correlation can effectively 

reduce the bias error caused by interpolation in the 

Levenberg-Marquardt algorithm. The effectiveness of the 

Gaussian low-pass filter on the interpolation error reduction 

of the FA-NR algorithm was verified in [29]. In this section, 

the effectiveness of these two filters on the 3D FA-NR 
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algorithm and the 3D IC-GN algorithm is testified, 

respectively. 

During the volume image pre-filtering, the 3D kernel can 

be implemented by three successive one-dimensional (1D) 

convolutions in x, y, and z direction. The 1D kernels of the 

binomial filter with different sizes are listed in Table 2. 

 
Table 2.  1D kernel of the binomial filter with different sizes. 

 

Size Binomial filter 

3×3×3 voxel 1/4 [1 2 1] 

5×5×5 voxel 1/16 [1 4 6 4 1] 

7×7×7 voxel 1/64 [1 6 15 20 15 6 1] 

 
Meanwhile, the 1D kernel of a Gaussian filter is obtained 

by 
 

2 2
2( ) xg x Ce σ−=                           (2) 

 
where x is the distance from the origin and ranges from -m to 
m. The kernel size is 2m+1. σ is the SD of the Gaussian 
function. In this work, the size of the Gaussian filter (denoted 

as h) is chosen to be ( ) ( )4 1 4 1h σ σ= + × +  . Factor C is 

chosen to ensure the kernel sums up to unity. 
 
4.1.  Subvoxel translation 

Two 5×5×5 filters are adopted to filter all volume images of 

two image sets generated in Section 3.1: the first image set 

without noise and the fifth image set which has a 4 gray value 

noise, respectively. The u displacement results of two image 

sets in three situations (i.e., without filter, the volume images 

are filtered by the binomial filter, and the volume images are 

filtered by Gaussian filter) of the two algorithms are shown 

in Fig.5. and Fig.6., respectively. From Fig.5., it can be seen 

that the results of the two filters are similar. When using the 

3D FA-NR algorithm, the mean bias error for noiseless 

images almost remains unchanged before and after pre-

filtering, while the SD error has a significant increase. On the 

other hand, when using the 3D IC-GN algorithm, the mean 

bias error shows a slight decrease after pre-filtering. Like the 

3D FA-NR algorithm, the SD error of the 3D IC-GN 

algorithm also increases significantly. From the results of the 

total error of the measurement results, the low-pass pre-

filtering of the noiseless image will lead to the increase of the 

total error of the displacement measurement results, but the 

increase is not significant.  
For noise volume images, from Fig.6., it can be seen that in 

the 3D FA-NR algorithm no matter which filter is used, the 
mean bias error is lowered greatly, especially after pre-
filtering, the maximum mean bias error declines to 97 %. 
Meanwhile, in the 3D IC-GN algorithm, the amplitude of the 
sinusoidal error curve is also decreased after pre-filtering. 
The peak value of the curve has more than halved. For 
instance, at 0.25 voxel displacement, before pre-filtering, the 
mean bias error is 8.8 ×10-4 voxel. It becomes 3.1×10-4 voxel 
and 2.9×10-4 voxel when using the binomial filter and 
Gaussian filter, respectively. However, it is obvious that the 
effectiveness of pre-filtering on the 3D FA-NR algorithm is 
more distinct than on the 3D IC-GN algorithm. 

                            3D FA-NR                                                           3D IC-GN 

 

  

   
 

Fig.5.  Displacement errors for noiseless volume images using 

different filters: (left) 3D FA-NR algorithm, (right) 3D IC-GN 

algorithm. 

 
                        3D FA-NR                                                               3D IC-GN 

    

  

   
 

Fig.6.  Displacement errors for noise volume images (noise, SD = 4) 

using different filters: (left) 3D FA-NR algorithm, (right) 3D IC-GN 

algorithm. 
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On the other hand, it can also be seen from Fig.6. that after 

pre-filtering there is no significant change of the SD error of 

the 3D FA-NR algorithm. However, in the 3D IC-GN 

algorithm, it can be noticed that using low-pass pre-filtering 

can result in an increase of the SD error. The reason for the 

increase of the SD error is that pre-filtering images will lessen 

the sum of square of subset intensity gradients (SSSIG) [38] 

value in the subvolume, and the SSSIG value is inverse 

proportional to the SD error of a subvolume in the IC-GN 

algorithm. Therefore, pre-filtering images will cause an 

increase in the SD error. 
 

4.2.  Complex deformation 

To further testify the effectiveness of low-pass pre-filtering, 

we use the numerical indentation experiment to test the 

performance of low-pass pre-filtering in a more complex 

deformation situation. Meanwhile, through the above 

analysis, we can find that the difference between a binomial 

filter and a Gaussian filter is small, so we just use the 

Gaussian filter in this section.  

 

 
 

Fig.7.  Synthesizing the deformed volume image. 

 

 
 

Fig.8.  Comparison of w displacement error of two algorithms on 

slice A. 

 

The volume image (200×200×200 voxels) obtained by 

micro-CT of epoxy resin composite embedded copper 

particles is adopted as the reference volume image. The 

deformed volume image is synthesized using the 

interpolation method based on the reference volume image, 

as shown in Fig.7. First, the numerical analysis of the 

indentation experiment is carried out in Abaqus to obtain the 

displacement field. Then, using the image interpolation 

method [39], the obtained displacement field can be added to 

the reference volume image to synthesize the deformed 

volume image. Specifically, the obtained displacement is 

interpolated to the integer voxel positions of the image and 

the reference volume image is deformed according to this 

interpolated field. This will result in a grey value map at non-

integer voxel positions. Accordingly, the grey values at the 

integer voxel positions are obtained by interpolation of the 

non-integer ones. This is the deformed volume image. In the 

finite element model, the specimen size is set to be 

20×20×20 mm, and the radius of the indenter is 2.5 mm. The 

indenter is considered as a rigid body and the specimen is 

taken as a linear elastic body, whose elastic modulus and 

Poisson’s ratio are 2.2GPa and 0.2, respectively. The bottom 

end of the specimen is constrained in all degrees of freedom 

and the indenter only has the translational degree of freedom 

in the z-direction. The displacement of the indenter is 0.3 mm. 

The contact between the specimen and the indenter is 

assumed to be frictionless. 

 

    
 

Fig.9.  Comparison of w displacement error between two algorithms 

along the line AB in three situations: (left) 3D FA-NR algorithm, 

(right) 3D IC-GN algorithm. 

 
Table 3.  Statistics of all calculation points in VOI between two 

algorithms. 

 

Measurement 

error 

3D FA-NR algorithm 

Noiseless 

without 

filter 

Noise 

SD=4 

without 

filter 

Noise 

SD=4 

with filter 

Mean abs 

error (mm) 
9.0×10-4 1.8×10-2 3.3×10-3 

SD error (mm) 6.0×10-4 7.7×10-3 2.4×10-3 

Total error 

(mm) 
1.1×10-3 2.0×10-2 4.1×10-3 

Measurement 

error 

3D IC-GN algorithm 

Noiseless 

without 

filter 

Noise 

SD=4 

without 

filter 

Noise 

SD=4 

with filter 

Mean abs 

error (mm) 
9.0×10-4 3.8×10-3 3.3×10-3 

SD error (mm) 5.0×10-4 2.9×10-3 2.4×10-3 

Total error 

(mm) 
1.0×10-3 4.8×10-3 4.1×10-3 

 
In the DVC analysis, the subvolume and step size are set to 

be 21×21×21 voxels and 5 voxels, respectively. There are 

Noiseless Adding noise Filtering noise 

3
D
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A
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D
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C
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N
 

A B A B A B

B A B A B

Max = 4.1×10-3 voxel 

SD =  6.4×10-4voxel 
Max = 1.3×10-2voxel  
SD = 2.7×10-3

 

voxel  

Max = 4.2×10-3voxel  
SD =  6.4×10-4voxel  

Max = 1.9×10-2voxel  
SD =  3.3×10-3voxel  

Max = 1.4×10-2voxel  
SD =  2.7×10-3voxel  

A 

Max = 2.5×10-2voxel  

SD =  4.8×10-3

 

voxel  
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33×33×33 = 35937 regularly distributed calculation points. In 
the test, w displacement measurement error (the absolute 
value of the difference between the imposed w displacement 
and the measured one) is used to assess the measurement 
accuracy. Fig.8. shows the w displacement error of the two 
algorithms on slice A (z = 90 voxel, shown in Fig.7.) in three 
situations, including noiseless volume image, noise volume 
image (adding SD = 4 white Gaussian noise to the noiseless 
volume image) and noise volume image filtered by 5×5×5 
Gaussian filter. It can be seen from Fig.8. that if the images 
are not filtered by the Gaussian filter, the displacement error 
of the 3D FA-NR algorithm is large. After using the Gaussian 
filter, the error will decrease greatly. For the 3D IC-GN 
algorithm, the displacement error has no obvious change 
before and after pre-filtering. 

Detailed displacement error comparison between the two 
algorithms along the line AB on slice A (y = 90 voxel, shown 
in Fig.8.) is shown in Fig.9. It is seen that in the 3D FA-NR 
algorithm, after adding the white Gaussian noise, the increase 
of the displacement error is obvious. If the image is filtered 
by the Gaussian filter, the error is back to where it was before 
adding noise. On the contrary, the results of the 3D IC-GN 
algorithm stay at the same level in all three situations. Table 3. 
lists the statistics of all calculation points, including mean 
displacement error, SD error, and total error. From the figure, 
it can also be seen that the low-pass pre-filtering is very useful 
in the 3D FA-NR algorithm but has no obvious effect on the 
3D IC-GN algorithm. 
 
5.  CONCLUSION 

In this work, the effects of low-pass pre-filtering on DVC 
when using two mainstream subvoxel registration algorithms 
(3D FA-NR algorithm and 3D IC-GN algorithm) are 
investigated. The influences of image noise on the accuracy 
and precision of the two subvoxel registration algorithms are 
first analyzed by numerical translation experiments. Then the 
effects of the low-pass pre-filtering approach on the two 
algorithms are examined using simulated images with 
different noise levels and deformation modes. This work 
clearly addressed the unsolved problems posed in our 
previous work [29] regarding the effects of low-pass pre-
filtering on the DIC/DVC algorithms. Valuable conclusions 
are summarized as follows: 

1)  Random image noise has little influence on the 
systematic error of the 3D IC-GN algorithm but has a great 
influence on the 3D FA-NR algorithm. When the images are 
noiseless, the systematic error and random error of the two 
algorithms are almost the same. However, with the increase 
of noise, the systematic error of the 3D FA-NR algorithm 
increases sharply, while the 3D IC-GN algorithm only 
fluctuates slightly. The random errors of the two algorithms 
are the same and increase with noise.  

2)  Low-pass pre-filtering can effectively improve the 
accuracy of the 3D FA-NR algorithm but the effect of low-
pass pre-filtering on 3D IC-GN algorithm is not so obvious 
as on 3D FA-NR algorithm. Since real experimental images 
unavoidably contain certain noise, the 3D IC-GN algorithm, 
which can effectively diminish the influence of image noise 
on measured displacement, is highly recommended for 
practical use. However, as the measurement accuracy of the 
3D FA-NR algorithm is greatly affected by image noise, if 

using it in DVC, low-pass pre-filtering must be used to reduce 
the impact of image noise, particularly a low-order 
interpolation algorithm is used.  

It should be pointed out that the results of this study are 

obtained from numerical experiments, and only Gaussian 

noise is considered. However, as real experimental volume 

images may be contaminated by many factors such as thermal 

noise, readout noise, etc., only computer-simulated speckle 

volume images were used in this research. Whether the results 

can be effectively applied to real volumetric images 

contaminated with a variety of complicated noise still 

requires further research. 
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