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In this paper, a computationally efficient and high precision parameter estimation algorithm with frequency-time combination is proposed 
to improve the estimation performance for sinusoidal signal in noise, which takes the advantages of frequency- and time-domain algorithms. 
The noise influence is suppressed through spectrum analysis to get coarse frequency, and the fine frequency is obtained by de-noising 
filtering and using linear prediction property. Then, estimation values of the amplitude and initial phase are obtained. The numerical results 
indicate that the proposed algorithm makes up for the shortcomings of frequency- and time-domain algorithms and improves the anti-
interference performance and parameter estimation accuracy for sinusoidal signal. 
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1.  INTRODUCTION 

Accurate parameter estimation for real-value sinusoidal 
signal in additive white Gaussian noise is a fundamental 
problem in a wide range of fields, and the studies of parameter 
estimation algorithms have an important theoretical 
significance and application value [1], [2]. The samples of a 
single-tone sinusoidal signal can be described as:  

 
0,1, , 1n n nx s z n N                        (1) 

 
where  cosns A n   , 0A  ,  0,  ,  ,    are 

unknown but deterministic constants that represent the 
amplitude, frequency, and initial phase of the sampled signal, 
respectively. The subscript n  denotes index number, and N

is the signal length. nz  is zero-mean, additive white Gaussian 

noise with variance 2 . The signal to noise ratio (SNR) is 
defined as   2 210 lg 2SNR A  , and the unit of SNR is dB. 

The frequency   is the most crucial parameter of the 
sampled signal. As long as the frequency is estimated, the 
estimation of amplitude and initial phase can be obtained 
subsequently. Therefore, the frequency estimation algorithms 
are mainly introduced in this paper [3].  

In the last decades, many frequency estimation algorithms 
for sinusoidal signal in noise have been proposed, which can 
be classified into two main categories: the frequency- and 
time-domain algorithms [4]. 

The frequency-domain algorithms are mainly based on the 
Discrete Fourier Transform (DFT)  [5].  It is well known that 

the real-value sinusoidal signal has positive- and negative- 
frequency components, which superpose and interact with 
each other. Therefore, the results of frequency-domain 
algorithms are vulnerable to the spectrum leakage caused by 
the negative-frequency component. In some researches, 
windowing approach is adopted to reduce the influence of 
spectrum leakage [6], which improves the frequency 
estimation accuracy, but there is an obvious estimation bias 
in windowing algorithms. Reference [7] proposed a new 
frequency estimation algorithm, which can improve the 
estimation performance by filtering out the negative-
frequency component. However, when the signal frequency 
is close to 0 or SNR is in a medium or high state, the 
estimation accuracy will decrease. Reference [8] estimated 
signal frequency by incorporating an iterative leakage 
subtraction strategy, which enhances estimation performance 
at high SNR, and the algorithm called Ye that has the best 
estimation performance in frequency-domain algorithms. 
Nevertheless, when the signal frequency is low, the 
estimation accuracy decreases with the increase of SNR. 

The time-domain algorithms can be classified as linear 
prediction algorithms [9], autocorrelation algorithms [10], 
and other algorithms with more computational complexity, 
such as MUSIC and ESPRIT algorithms [11]. The linear 
prediction property of the sinusoids is usually used to 
estimate signal frequency, which is a common frequency 
estimation algorithm, but it is easily affected by noise [12]. 
Reference [13] presented an autocorrelation estimation 
algorithm to estimate frequency by calculating the 
autocorrelation  function  of the  sampled  signal.  Due  to the 
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influence of non-integer period sampling, the estimation 
accuracy is characterized by periodic deterioration. In order 
to overcome this drawback, the autocorrelation function is 
redefined in [14], where the algorithm is called PCA, which 
has the best frequency estimation accuracy in time-domain 
algorithms. However, the PCA has a high computation 
complexity, which reduces the real-time performance. 

To sum up, the frequency-domain algorithms have the 
advantages of better anti-interference properties and real-time 
performance. However, the estimation accuracy decreases 
obviously because of the spectrum leakage influence under 
the condition of high SNRs or low frequencies. The time-
domain algorithms are easily affected by noise and non-
integer period sampling, but the estimation accuracy is better 
at high SNRs. In order to enhance the universality and 
improve the estimation performance for sinusoidal signal in 
noise, a novel parameter estimation algorithm is proposed in 
this paper, which combines the advantages of frequency- and 
time-domain algorithms and overcomes their shortcomings. 

The rest of the paper is organized as follows: In Sec. 2, we 
give the detailed estimation procedure. In Sec. 3, we analyze 
the computational complexity of the proposed algorithm and 
compare it with other excellent algorithms. In Sec. 4, the 
estimation performance of the proposed algorithm is verified 
by numerical simulations. Finally, the full text is summarized 
in Sec. 5. 
 
2.  NEW ESTIMATION ALGORITHM 

The proposed estimator is realized in two steps: coarse 
estimation and fine estimation. In the first stage, to suppress 
the noise influence, the sampled signal is processed by 
spectrum analysis, and the coarse frequency is pre-estimated. 
In the second stage, the noise is further mitigated through a 
de-noising filter, and the fine frequency is estimated by linear 
prediction property. Then, the estimation values of amplitude 
and initial phase are obtained. It is worth noting that the fine 
estimation procedure of frequency was proposed in [15], 
which was called STMB and was designed for damped 
sinusoidal signal with single-tone in noise. When STMB is 
directly used to process the signal in this paper, the parameter 
accuracy is poor under low SNR condition. The parameter 
accuracy can be improved by adding iterations, but the 
computation complexity will increase significantly. The 
proposed algorithm uses the idea of STMB to improve the 
parameter estimation accuracy, and the results compared with 
STMB will be discussed in the next section. 

 
A.  Coarse estimation 

To improve the calculation resolution, we append N zero 

points after the sampled signal nx , and the zero-padding 

signal is 2 0 1, 1[ , , ,0,0, ,0]N Nx x x x  L L . Then, the 2Nx is 

processed by 2N-point fast Fourier transform (FFT), and the 

index number 0k is obtained. 
 

 0 2( ) 1,2, , 1NY k DFT x k N  L                  (2) 
 

2

0 0arg max ( )k Y k                                (3) 

where argmax(  ) denotes the argument of the maximum 

value of function . 

Then, the coarse frequency 0̂ is calculated by: 
 

0 0
ˆ k

N

                                       (4) 

 

Where ̂ is the estimation value of  . 
After adding zero signal to sampled signal, the coarse 

frequency estimation becomes more accurate. However, the 
computation cost increases. To solve this drawback, a fast 

procedure to get 0k is designed. Firstly, the sampled signal is 

processed by N-point FFT directly, and the index number is 

assumed as 1k . 
 

 1( ) 1,2, , 2 1nY k DFT x k N  L                    (5) 

 
2

1 1arg max ( )k Y k                                  (6) 
 

There is no doubt that 0k equals one of  12 0.5k  , 12k and

 12 0.5k  .  

Then, the index number 2k of the highest magnitude of 

three points spectrum,  2 1 0.5Y k  ,  2 1Y k , and  2 1 0.5Y k  , can be 

obtained. 

Finally, the 0k is computed by 0 22k k . 

In addition, the computational complexity of two 
procedures will be analyzed in the next section. 

 
B.  Fine estimation 

According to the linear prediction property of sinusoidal 

signal, the noiseless signal ns can be expressed as: 
 

  1 22cosn n ns s s                               (7) 

 
and the prediction coefficient a  is: 
 

 2cosa                                     (8) 

 
When the coarse estimation value of frequency is acquired, 

the initial value of a is obtained. 
To decrease the noise influence, a de-noising filter is 

designed in [15], and the transfer function is: 
 

  1 2

1

1
H z

az z 
 

                               (9) 

 
According to the z transform on both sides of (7), 
 

   1 21 0az z S z                                (10) 

 

where  
1

0 1
1 21

b b z
S z

az z



 




 
, 0 cosb A  ,  1 cosb A    . 
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The sampled signal nx can be expressed as: 

 

2 1 0 1 1n n n n n nx x ax b b z                          (11) 

 

where n denotes the unit impulse signal. 

Computing N samples of the filter’s impulse response 

 n nu H  and de-noising the sampled signal  n nv H x , the 

filtered signals nv  and nu  fulfill the relationship: 

 

2 1 0 1 1n n n n n nv v av b u bu z                          (12) 

 

For an N-point sampled signal, the prediction matrix can be 
constructed by linear prediction property. 

 

0 0 0

1 0 1 0 1
0

1
1 3 2 1 2 1

0 0 0

0

N N N N N N

v u z
a

v v u u z
b

b
v v v u u z     

     
                    
            

M M M M M
      (13) 

 

After filtering, the noise values become small, i.e. nz 0 . 

Then, the prediction coefficients can be calculated by the least 
squares method, and the fine frequency is obtained according 
to (8). 

 

 1ˆ cos 2a                                  (14) 

 
According to the estimation value of frequency, the 

complex amplitude can be calculated by an iterative 
procedure to suppress the spectrum leakage influence.  

 

 
1

ˆ ˆ

0

1 N
i n i n

n
n

c x c e e
N

 


  



                        (15) 

 

where 
2

iA
c e ,

2
iA

c e   , and the initial value of c is 0. 

Thus, the estimation values of amplitude and initial phase 
are obtained. 

ˆ

ˆ 2

c

A c

  



                                     (16) 

 
where  anddenote the modulus and angle of complex  , 

respectively. 
The detailed procedure of the proposed algorithm can be 

summarized as follows: 
1. The coarse frequency is calculated by (4), to obtain the 

initial prediction coefficient. 
2. The precision prediction coefficient is calculated by (13). 
3. The fine frequency is estimated by (14), and the fine 

initial phase and amplitude are obtained subsequently by (15) 
and (16). 

3.  COMPUTATION COMPLEXITY ANALYSIS 

In this section, the computational complexity of frequency 
estimation is analyzed, and the comparison results with other 
excellent algorithms are presented in Table 1. and Fig.1. 

In the analysis, we neglect the operations where the 
complexity is Ο(1). Firstly, we analyze the computation cost 
of 2N-point FFT procedure and N-point FFT procedure for 

finding index number 0k . For 2N-point FFT, the addition is
2
26 log NN and multiplication is 2

24 log NN . Whereas, for N-point 

FFT procedure, the addition is 23 log 4NN N and the 

multiplication is 22 log 6NN N . Hence, the N-point FFT 

procedure reduces the computational cost significantly. The 
PCA needs more additions and multiplications than other 
algorithms, because autocorrelation functions are calculated 
several times in the frequency coarse estimation stage. In 
addition, the PCA needs to construct the reference signal, 
which will calculate 2N sine/cosine functions. The Ye and 
STMB belong to iterative algorithms, and the iteration times 
of Ye and STMB are fixed to 3 and 2 for convergence 
according to the references, respectively. The Ye uses the 
FFT algorithm and calculates some iterative interpolation 
procedures, so the additions and multiplications are smaller 
than those of the PCA. However, the Ye needs to calculate 
complex-value exponential that requires two sine/cosine 
calculations for one operation, which increases the 
complexity. Because STMB needs to calculate the prediction 
matrix, the additions and multiplications are slightly higher 
than those of Ye, and are also smaller than those of PCA. 
Although the proposed algorithm uses the idea of STMB, our 
approach does not need iterative calculation. The 
computational cost of the new algorithm is slightly bigger 
than that of Ye, but is smaller than those of PCA and STMB. 
Therefore, the proposed algorithm is computationally 
efficient. 

 

 
 

Fig.1.  Comparisons of the computational complexity. a) and b) 
show the comparisons of additions and multiplications 
computations, respectively. 
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Table 1.  Comparison of the computation complexity. 
 

algorithm additions multiplications Sine/cos 

PCA[15] 
2
23 2 log

2 3

M N

M N

   
 

 
1 2

2

1

2 [log ]

2 41 3

M N

M N



 
 N 

Ye[7] 23 log 18NN N  22 log 27NN N  18N 

STMB 63N   66N   6 

Proposed 23 log 25NN N  22 log 28NN N  4N 

where 2
2[log ] 1NM  . 

 
4.  NUMERICAL RESULTS 

To verify the estimation performance of the proposed 
algorithm, the simulations are carried out under different 
conditions. The results are compared with those of PCA, Ye, 
and STMB. Meanwhile, the Cramer-Rao lower bound 
(CRLB) is used as a test standard [16], and the CRLB of the 
frequency, initial phase, and amplitude estimation values of 
real-value sinusoidal signal are: 

 

   

   
 

 

2

2

12
ˆvar

1

2 2 1ˆvar
1

ˆvar

N N SNR

N

N N SNR

A
A

NSNR





  
  



 


                           (17) 

 
In these tests, we fix 1A , 128N  , and  is random from

 to  . The mean square errors (MSEs) of the estimated 
parameter value are calculated over 5000 Monte Carlo 
simulations. 

Variable SNRs: we first examine the frequency estimation 
performance versus SNRs, varying from -10 to 50 dB, in 

steps of 2 dB. In addition, 0 2k  , and  is random from -0.5 to 

0.5. The numerical results are shown in Fig.2. 
 

 
 

Fig.2.  MSEs of ̂ versus SNRs. 

Our approach outperforms the other algorithms, and the 
MSEs are extremely close to the CRLB when SNRs > -4 dB. 
The estimation results of STMB designed for damped 
sinusoidal signal are close to CRLB in middle or high SNRs, 
but the anti-interference performance is very poor when 
SNRs < 15 dB. The Ye performs well at low SNRs, but it is 
characterized by MSEs saturation when SNRs > 30 dB. The 
PCA algorithm suffers from the interference, and there is an 
estimation deviation with CRLB about 3 dB. 

Variable frequencies: Then, we verify the frequency 
estimation performance versus frequencies, varying from
0.025 to 0.5  , in steps of 0.025 , and 10SNR dB . The 
numerical results are shown in Fig.3. 

 
 

Fig.3.  MSEs of ̂  versus  . 
 
Our approach has considerable estimation accuracy, and is 

better than other ones for all frequencies. The estimation 
performance of STMB is not good at low frequencies, and the 
estimation effect meliorates with the increase of frequencies. 
The PCA also has a low estimation accuracy at low 
frequencies when 0.1  , and there is an estimation 
deviation at medium and high frequencies. In addition, Ye has 
a good estimation performance, but it is a little worse than our 
approach. 

Variable initial phase: Then, we vary the initial phase to 
examine estimation performance of the initial phase, ranging 

from  to , in steps of 30 , 0 2k  , and 0.2  . In addition, 

SNR = 5 dB or SNR = 40 dB, and the numerical results are 
shown in Fig.4., respectively. 

In high SNRs condition, the proposed algorithm has a better 
initial phase estimation performance than those of other 
algorithms. The estimable range of initial phase is reduced 
slightly with the decrease of SNRs, but the estimation results 
are closer to CRLB than to other ones. The phase estimation 
range of STMB is restricted in high SNRs, and the estimation 
performance sharply declines in low SNRs. The PFM 
proposed in [13] is an excellent time-domain algorithm for 
phase estimation, but estimation effect is not good when the 
signal frequency is small. The frequency-domain algorithm, 
Ye, is close to CRLB when SNR is low because of the good 
anti-interference performance, but periodicity in the MSEs 
behavior is evident at high SNRs. 
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a) SNR = 5 dB 

 
 

b) SNR = 40 dB 
 

Fig.4.  MSEs of ̂ versus  when SNR = 5 dB and SNR = 40 dB. 

 
Variable SNRs: Finally, let us consider variable SNRs to 

verify the amplitude estimation performance, ranging from -

10 to 50 dB, in steps of 2. In addition, 0 2k  , 0.2  , and is 

random from  to  . The test results are shown in Fig.5. 

 

 
 

Fig.5.  MSEs of Â versus. SNRs . 

In low SNRs, our approach has a little estimation gap with 
Ye, but our approach performs better than other ones as SNR 
increases. Meanwhile, Ye has less effective estimation results 
because of spectrum leakage in high SNRs. The estimation 
results of PCA and STMB are affected by noise, and STMB 
has an obvious estimation deviation with CRLB. 

 
5.  CONCLUSION 

In this paper, a novel parameter estimation algorithm is 
proposed to reduce the noise influence and to improve the 
estimation performance. The proposed algorithm makes full 
use of the advantages of frequency- and time-domain 
algorithms. The noise influence is suppressed by FFT of 
frequency-domain algorithms and de-noising filtering of 
time-domain algorithms and the estimation performance is 
further improved by linear prediction property. Although the 
algorithm is simple, the idea is novel. 

The numerical results indicate that the frequency estimation 
performance of the proposed algorithm is superior to other 
excellent frequency- and time-domain algorithms under 
different conditions. The anti-interference and real-time 
performance are enhanced, and the MSEs of the frequency 
estimation values achieve the CRLB. Especially, when the 
signal frequency is low and the SNRs are high, the estimation 
advantage becomes more obvious. Meanwhile, the estimation 
accuracy of initial phase and amplitude are better than the 
other ones. 
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