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Abstract: The miniature sensor devices and power-efficient Body Area Networks (BANs) for Human Activity Recognition (HAR) have 
gained increasing interest in different fields, including Daily Life Assistants (DLAs), medical treatment, sports analysis, etc. The HAR 
systems normally collect data with wearable sensors and implement the computational tasks with a host machine, where real-time 
transmission and processing of sensor data raise a challenge for both the network and the host machine. This investigation focuses on the 
hardware/software co-design for optimized sensing and computing of wearable HAR sensor networks. The contributions include (1) design 
of a miniature wearable sensor node integrating a Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS IMU) with a 
Bluetooth Low Energy (BLE) in-built Micro-Control Unit (MCU) for unobtrusive wearable sensing; (2) task-centric optimization of the 
computation by shifting data pre-processing and feature extraction to sensor nodes for in-situ computing, which reduces data transmission 
and relieves the load of the host machine; (3) optimization and evaluation of classification algorithms Particle Swarm Optimization-based 
Support Vector Machine (PSO-SVM) and Cross Validation-based K-Nearest Neighbors (CV-KNN) for HAR with the presented techniques. 
Finally, experimental studies were conducted with two sensor nodes worn on the wrist and elbow to verify the effectiveness of the recognition 
of 10 virtual handwriting activities, where 10 recruited participants each repeated an activity 5 times. The results demonstrate that the 
proposed system can implement HAR tasks effectively with an accuracy of 99.20 %. 

Keywords: Integrated sensing and computing, Human Activity Recognition (HAR), Body Area Networks (BANs), Micro-Electro-
Mechanical System Inertial Measurement Unit (MEMS IMU), Bluetooth Low Energy (BLE). 

 
1. INTRODUCTION 

With the continuous progress of novel sensing and 
computing techniques, Human Activity Recognition (HAR) 
has attracted extensive attention and become a promising 
approach for applications in medical treatment, body 
kinematics, Human-Computer Interaction (HCI), Virtual 
Reality (VR), motion analysis, Daily Living Assistant (DLA) 
and elderly care [1]-[4]. Compared with Computer Vision 
(CV)-based techniques, the wearable sensing device-based 
solution breaks the limits of space by getting rid of the fixed 
and bulky equipment. It is not only free from privacy leaks 
but also convenient to use in people's daily life. It is 
undeniable that a wearable sensing network has become a 
competitive solution for various HAR applications [5].  

In recent years, many novel wearable HAR techniques and 
systems have been reported in the literature [6]. These HAR 
systems mainly improve the performance of the system by 
introducing new sensing techniques and mounting sensors on 
new body part locations [7] or combining with wireless 
communication technologies, such as WIFI, Bluetooth [8], 
Radio Frequency Identification (RFID), and ZigBee [9], [10]. 
Wearable HAR systems can be divided into two categories: 
single-sensor systems and multi-sensor systems. 

There are many single-sensor HAR-related studies for 
different applications [11], [12], such as household appliance 
control [13], exercise data recording [14], and daily activity 
recognition [15], [16]. Irene et al. [17] developed a low-cost 
wearable sensor node with a triaxial accelerometer that could 
transmit data to a PC via ZigBee and recognize simple daily 
life motions based on leg kinematics, including sitting, 
standing, and walking. Yen et al. [18] proposed a waist 
wearable device for daily activity analysis of patients with 
diseases like dialysis patients who have blood vessel 
prostheses on their arms, which make them inconvenient for 
strenuous exercises. However, the data collected by a single 
sensor may contain fewer features, which may be inadequate 
for accurate classification. Therefore, many investigations 
tend to integrate more sensors and deal with the multi-channel 
data sources with data fusion algorithms using more powerful 
computing devices. Santoyo-Ramón et al. [19] designed a 
wearable fall detection system based on Body Area Network 
(BAN) with four sensor nodes to transmit data to a 
smartphone via Bluetooth for data processing. Li et al. [20] 
proposed Wi-Motion, a WIFI signal-based human activity 
recognition system. The Wi-Motion introduced the amplitude 
and phase information extracted from the Channel State 
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Information (CSI) sequence and eventually obtained an 
average accuracy of 96.6% for the recognition of 5 typical 
human activities in a Line-of-Sight (LoS) environment. A 
Multi-sensor system usually improves the recognition 
accuracy at the cost of increasing the computational 
complexity [21]. Reducing the computational complexity has 
been a common challenge for multi-sensor HAR systems. 
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Fig.1.  Diagram of algorithmic flow for HAR. 

The optimization of data processing and decision-making 
algorithms has been considered an effective way of 
improving the performance of HAR. As shown in Fig.1., 
HAR functions mainly include four steps: data collection, 
data segmentation, feature extraction, and classification. The 
improvement towards an optimized HAR algorithm mainly 
focuses on the steps of feature extraction and classification.  

Hsu et al. [22] utilized the nonparametric weighted feature 
extraction algorithm and the Principal Component Analysis 
(PCA) to reduce the dimensions of features, which can 
achieve a recognition accuracy of 98.23 % for 10 common 
domestic activities. Tian et al. [23] used a hybrid feature 
selection method based on Game Theory-based Feature 
Selection (GTFS) and Binary Firefly Algorithm (BFA) to 
optimize the feature set and classification parameters and 
used the kernel extreme learning machine as the classifier, 
which resulted in a robust system. Hassan et al. [24] proposed 
a smartphone inertial sensors-based HAR system, which used 
Kernel Principal Component Analysis (KPCA) and Linear 
Discriminant Analysis (LDA) for further processing of the 
features, and used Deep Belief Networks (DBN) to train the 
features for recognition. The performance is better than 
normal Artificial Neural Networks (ANNs). In addition, there 
are many related investigations of algorithm optimization for 
HAR [25]-[29]. Although the algorithm optimization can 
improve the accuracy of HAR, it may increase the 
computational complexity which eventually introduces a 
heavier load for the host machines. 

Wearable HARs have made significant progress in both 
sensing devices and algorithms, but they still face technical 
challenges. Firstly, the sensor nodes are usually bulky for 
wearable applications, which may affect people’s daily 
activities; Secondly, the sensor nodes normally send raw data 
to a host PC for further processing, which requires high 
throughput of wireless communication; Thirdly, the data 
fusion, feature extraction, and classification algorithms may 
introduce computational load to the host PC and jeopardize 
its real-time performance. Therefore, the investigations of 
optimized sensing and computing of wearable systems for 
unobtrusive activity recognition become the trend of HAR. 

Motivated by the above technical challenges, the work of 
this investigation focuses on the following technical issues: 
Firstly, a technical solution for miniaturized wireless sensor 

nodes by integrating MEMS IMU and Bluetooth Low Energy 
(BLE) to constitute a BAN system for unobtrusive HAR; 
Secondly, the optimization of the computational resources by 
allocating in-situ pre-processing and feature extraction to the 
sensor nodes, which relieves the burden of both the data 
transmission of BAN and the computation of host PC; 
Thirdly, the investigation of Particle Swarm Optimization-
based Support Vector Machine (PSO-SVM) and Cross 
Validation-based K-Nearest Neighbors (CV-KNN) for the 
classification of human activities. 

The rest of this article is structured as follows: Section II 
presents the design of the proposed wearable HAR system 
including the hardware module design and computational 
resource allocation; Section III describes the proposed data 
processing algorithm for HAR; Section IV gives the 
experimental studies to verify the proposed solutions, and the 
conclusion is drawn in Section V. 

2. SYSTEM DESIGN: SENSOR NODES AND WIRELESS BAN 
The schematic of the wearable BAN for HAR is shown in 

Fig.2. Multiple wearable sensor nodes constitute the BAN for 
data collection via BLE, and the data is transmitted to a host 
PC for further processing and classification. This section 
describes the design of the proposed sensor nodes and the 
corresponding computational resource optimization.  
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Fig.2.  Schematic of BLE-based BAN for HAR. 

A. Hardware design of the sensor nodes 
The proposed sensor nodes consist of a MEMS IMU 

MPU6050, a BLE in-built MCU NRF52832, and a coin 
battery. As shown in Fig.3., the main controller NRF52832 is 
a System-on-Chip (SoC) device with a 64 MHz Cortex-
M4 core and an in-built BLE module sized 6.0×6.0 mm. The 
MPU6050 is a MEMS IMU which outputs triaxial 
acceleration and triaxial angular rate sized 4.0×4.0 mm. The 
MCU implements the data collection and pre-processing, and 
transmits the processed data to the host PC via BLE. The 
components are assembled on an FR4 substrate with a 
thickness of 0.8 mm and a size of 4.3×3.5 cm. 

 

a) Sensor node hardware b) Wearable nodes with BLE 

Fig.3.  Wearable sensor nodes with BLE. 
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B. Optimization of computational resource 
Since the transmission of raw sensor data to the host PC 

may introduce a load for both the communication network 
and the host PC, it is a promising way to allocate part of the 
computational tasks to the sensor nodes. Normally, the 
computation can be separated into three steps: pre-
processing, feature extraction and processing, and decision 
making for classification. Since the former two steps both 
handle the raw sensor data, they are usually time-consuming. 
It also takes time to transmit the raw data to a host PC. 
However, the decision-making dealing with the limited 
number of features may be a lightweight computation.  

 

Fig.4.  Optimization of computational resources. 

As shown in Fig.4., this investigation introduces an 
integrated sensing and computing technique, which allocates 
the computation tasks of pre-processing and feature 
extraction to the sensor nodes. Then, the limited data of 
features can be transmitted to the host PC via BLE for 
classification and application-specific tasks. By taking 
advantage of the limited computational resources of MCU, 
the time-consuming data transmission can be eliminated and 
the computation load of the host PC can be alleviated by 
distributing the computational tasks to the sensor nodes.  

3. DATA PROCESSING ALGORITHMS FOR WEARABLE HAR 
The raw data obtained from the MEMS IMU are triaxial 

acceleration and triaxial angular rate. To make use of the data 
streaming for activity recognition, the algorithm flow shown 
in Fig.5. is proposed. 
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Fig.5.  The data processing flowchart for HAR. 

The sensor data acquisition is executed with a sampling 
rate of 100 Hz, followed by data filtering, data segmentation, 
feature extraction, feature data standardization, and feature 
dimensionality reduction. The final step is a feature-based 
classification for the decision-making of activity recognition.  

A. Data pre-processing 

A.1.  Sensor calibration 
For MEMS IMUs, bias error and random noise are the 

main factors that are harmful to the performance of HAR. 
Therefore, the correction of bias and cancellation of random 
error is conducted in the preprocessing. The models of bias 
and random error for the triaxial acceleration and triaxial 
angular rate can be described as follows[30]: 

 ( ) ( ( ), ) ( )r b aa i f a i g a i n= + +  (1) 

 ( ) ( ) ( )r b wi i i nω ω ω= + +  (2) 

where ar(i) and ωr(i) are the accelerometer and gyroscope 
measurements, a(i) and ω(i) are the ideal measurements 
without errors, ab(i) and ωb(i) are the biases, na and nw are the 
random noises. In equation (1), f(a(i),g) denotes the force the 
accelerometer measures, where g is the gravitational 
acceleration. For HAR applications, denoising is not a key 
factor determining the performance. Therefore, lightweight 
denoising algorithms are expected to decrease the 
computational load. In this investigation, a static calibration 
is employed to deal with the bias. The sensor is put in a static 
state to collect 500 samples of triaxial acceleration and 
triaxial angular rate for the calibration of bias. To suppress 
the impact of random error, a moving average filter is 
employed for each data sample. 

A.2.  Moving average filter for noise cancellation 
To reduce the influence of random noise in the sensor data 

acquisition, the moving average filter is employed to improve 
the quality of data. The calculation of the moving average 
filter is: 

 
( ) ( 1) ( 1)( ) x n x n x n NX n

N
+ + + + + −

=


 (3) 

The selection of N is a critical issue, as a too-large N will 
cause data distortion and jeopardize the features of the data, 
and a too-small N may not be able to effectively remove the 
noise. Through repeated experimental verifications, the 
selected window size N is set to 5. 

A.3.  Data segmentation 
Since the input data for human activity recognition is a 

continuous time-series signal, an appropriate length of the 
sliding window should be selected for further feature 
extraction and classification.  

The selection of the window size is also critical for further 
data processing. When the window size is too small, it can 
hardly incorporate enough information to recognize the 
activities. When the window size is too large, it may cause 
serious delays that are unacceptable for the real-time 
requirements of HAR applications. In this investigation, a 
sliding window with a length of 100 sampling points and 
50 % overlap is selected to segment the continuous signal. 
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B. Feature extraction and dimensionality reduction 

B.1.  Feature extraction 
The process of feature extraction should be able to retain 

the critical information that is contained in the data for HAR. 
The mainstream feature extraction methods for HAR may 
include time domain, frequency domain, and time-frequency 
domain methods. This investigation mainly uses the methods 
of time-domain feature extraction. For each dimension of 
data, 8 selected features including mean, standard deviation, 
maximum, minimum, range, kurtosis, skewness, and quartile 
are extracted for further processing. The dimension of the 
feature matrix is 96, which is the product of data channel 12 
and the quantity of features 8.  

B.2.  Feature data standardization 
For the convenience of the following calculations, the scale 

of each feature in the feature vectors should be regulated 
within the same range. The processing of the feature vector in 
this step is named feature data standardization. Suppose the 
matrix of the feature vector is Sn×m where there are n channels 
and each has m features, the standardization is implemented 
with formula (4) to convert the elements in the range [0,1]. 

 ( )var
ij j

ij

j

s s
s

s
∗ −
=  (4) 

where standardized element sij
* is obtained by the original 

element sij, the average of the jth column, and the Root Mean 
Square (RMS) of jth column. The average and RMS of jth 
column can be obtained with (5) and (6). 
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j ij j
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s s s
n =
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B.3.  PCA-based feature dimensionality reduction 
The compression of feature dimension is another step 

before classification, which reduces the dimensionality of the 
high-dimension feature matrix and simplifies the calculation. 
In this investigation, the PCA is employed to reduce the 
standardized m-dimensional matrix to the p-dimensional 
using a transformation matrix. The purpose of PCA-based 
feature dimensionality reduction is to obtain the 
independently correlated data features to be used for 
classification.  

Table 1.  Accuracy of KNN with different quantities of principal 
components. 

Algorithm Qty of principal 
components 

Accuracy (%) 

KNN 15 89.77 
KNN 18 92.05 
KNN 20 91.48 
 

For the PCA-based dimensionality reduction in this 
investigation, the cumulative contribution of the principal 
components is shown in Fig.6. When the quantity of principal 
components is 18, the cumulative contribution reaches 
92.03 %, which is acceptable for further classification.  

Table 1. gives the relationship between the number of 
principal components and the accuracy of recognition for the 
KNN algorithm. When the quantity of principal components 
is 18, the accuracy of recognition reaches 92.05 %. In this 
investigation, the feature dimensionality of the feature set is 
reduced from 96 to 18.  
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Fig.6.  Feature matrix dimensionality reduction. 

C. Classification algorithms 
The classification algorithms play an important role in the 

performance of HAR. The commonly used classification 
methods for HAR include decision tree, KNN, SVM, naive 
Bayes, etc. Among the methods, KNN is considered a simple 
and effective one, and SVM is considered a mature and 
efficient choice. The work of this investigation is based on 
SVM and KNN. 

C.1.  Parameter optimization-based SVM 
As an efficient supervised learning algorithm, SVM is a 

binary classification model which defines a linear classifier 
with the largest interval in space. The basic idea of SVM is to 
classify linearly separable data through the optimal 
hyperplane and to maximize the geometric distance from the 
sample data on both sides of the hyperplane. 

For the optimization of SVM, the kernel function 
parameters ξi and penalty factor C are the key parameters to 
determine its performance. In this investigation, the Cross-
Validation (CV) method and the PSO algorithm are used to 
automatically select the optimal ξi and C to obtain the SVM 
classification model with the best performance. 

In the CV method, the parameters ξi and C are combined 
with a fixed step size within a certain value range. The 
training set data under different combinations of ξi and C are 
divided into K groups. Each group of data is used as a test set, 
and the remaining K-1 groups of data are used as training sets. 
The average classification accuracy of the final test set for 
each combination is taken as the accuracy of this group of 
models. Then, compare the accuracy rate of the model under 
different combinations of ξi and C, where the highest 
accuracy rate corresponds to the optimal ξi and C. 
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The principles of PSO-SVM algorithm can be described as 
follows [31]. Suppose there is a swarm, of size n, each particle 
P(i) (i=1, 2, …, n) in the swarm is characterized by three 
parameters: (1) its current position p(i), which refers to a 
candidate solution of the optimization problem at an iteration; 
(2) its velocity v(i) and (3) the best position pb(i) identified 
during is past trajectory. Let pg(i) be the best global position 
identified by overall trajectories traveled by the particles of 
the swarm, the optimal position is obtained by one or more 
fitness functions. The particles moving in the searching 
process can be calculated with the following equations: 

 1 1

2 2

((i+1) )[ ( ) ( )]( )
+ ( )[ ( ) ( )]

b

g

i P iv wv i c r
c r

p
Pi

i
i p i

−
−

= +
 (7) 

 ( 1) ( ) ( 1)p i p i v i+ = + +  (8) 

where r1(i) and r2(i) are random variables from a uniform 
distribution in the range [0,1], w is the inertia weight, and c1 
and c2 are learning factors. Equation (7) is used to compute 
the velocity of particles in the swarm, and equation (8) is used 
to update the position of particles. Both equations (7) and (8) 
are iterated until the search process reaches a convergence 
criterion. 

To carry out the classification of k human daily activities, 
a one-to-one multi-class strategy based on the combination of 
multiple SVM is selected, where the quantity of classifiers is 
k(k+1)/2. When the sample to be tested is input for 
classification, the outputs of the classifiers are counted and 
the category with the most votes is the activity class of the 
input sample. In this investigation, the outputs of the 
classifiers are the 10 pre-defined activity labels.  

C.2.  CV-KNN 
Compared to SVM, KNN is a lazy learning algorithm that 

does not need a model training process. The samples to be 
tested are processed directly according to the principles of the 
KNN algorithm. 

The construction of the KNN algorithm classification 
model includes three critical elements: distance 
measurement, finding the K value, and decision making. This 
investigation uses the Euclidean distance metric. Suppose 
there are two n dimension vectors x = (x1, x2, x3, … xn) and 
y = (y1, y2, y3, … yn). The Euclidean distance can be 
calculated as follows: 

 ( )2

1
( , ) i

n

i
i

D x y x y
=

= ∑ −  (9) 

For finding the K values, this investigation employs the K-
fold cross-validation. For decision making, the class of a 
sample is determined by the class of its K nearest neighbors.  

4. EXPERIMENTAL STUDIES 
To evaluate the proposed methods, the experimental 

studies are conducted with participants wearing the sensor 
nodes to repeat pre-defined activities. The activities chosen 
for the evaluation are the virtual writing of numbers 0-9 with 
the right hand in the air. 

A. Experimental Setup and Data Preparation 

 

Fig.7.  Experimental setup. 

In the experiment, 10 participants are recruited to perform 
the activities to evaluate the proposed system and methods. 
For the 10 participants, there are 5 males and 5 females, 
whose heights are 170±10 cm, weights are 60±10 kg, and 
ages are 23-26 years old. 

As shown in Fig.7., the sensor nodes are mounted on the 
wrist and elbow of a participant. Each participant is requested 
to remain still for 2 seconds before starting and after finishing 
an activity. At the beginning of an activity, a participant is 
requested to stand straight with his/her left arm hanging down 
naturally and his/her right arm hanging flat. After standing 
still for about 2 seconds, the participant is requested to start 
to perform a virtual writing activity. After that, the participant 
needs to stand still for 2 seconds before completing the data 
collection. Each participant repeats the handwriting activities 
of numbers 0-9 for 5 times. The quantity of data generated in 
the experiment is 500 samples. 

In the experiment, the sampling rate is 100 Hz and each 
sample contains data on the triaxial acceleration and triaxial 
angular rate. The pre-processing, feature extraction and 
standardization are completed with the MCU of the sensor 
nodes. The host PC then receives the feature data for 
classification via the BLE network. The host PC for the tests 
is Lenovo 80S1 with a quad-core CPU at 2.5GHz, 8GB RAM, 
and the software platform is MATLAB2020b in Windows 10 
environment. 

B. Data preparation 
The multiple sensor nodes in a BAN work in an 

asynchronous way. They have their timing for data 
acquisition, preprocessing, feature extraction, and data 
transmission. The data from different nodes are integrated 
with the host PC. Since the preprocessing and feature 
extraction can be done in the sensor nodes, both the rate and 
the amount of data to transmit are largely decreased. 
Therefore, the delay in the sensor node can be neglected and 
the data from the multiple nodes can be combined into 
channel arrays with the host clock. The integrated data can be 
used for decision-making.  
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The data sets that consist of the sensor data and their 
corresponding activity category tags are divided into two 
categories: the training set and the test set, which occupy 
60 % and 40 %, respectively. There are differences in the 
different activities and the same activity for different people. 
To reduce this influence and obtain a more practical and 
effective model, the proportion of the training data for each 
activity in the data set is the same. Considering the 
differences in activities between participants, the percentage 
of samples for a certain participant in the training set and test 
set are identical. With the preprocessing, data segmentation, 
and feature extraction in Section 3, parameter-optimized 
SVM and KNN algorithms are expected for the classification 
of different activities. The kernel function parameters ξi and 
penalty factor C are the key parameters to determine. Once 
the key parameters are determined, the test set is then input to 
the classifiers and the prediction results of the activity 
classification are obtained.  

C. Performance evaluation 
The purpose of the evaluation is to assess the performance 

of CV-KNN, CV-SVM, and PSO-SVM for HAR. The key 
indicators to evaluate the classifiers are accuracy (Acc), 
precision (P), and recall (R), which are calculated as follows: 

 
TP TNAcc

TP TN FP FN
+

=
+ + +

 (  ) 

 
TPP

TP FP
=

+
 (  ) 

 
TPR

TP FN
=

+
 (  ) 

where TP, TN, FP, and FN represent true positive, true 
negative, false positive, and false negative, respectively. 

C.1.  Evaluation of the classifiers 
The confusion matrix and parameters of accuracy, 

precision, and recall are provided to evaluate the classifiers. 
The Acc, P, and R of the CV-KNN are given in Table 2., and 
that of CV-SVM and POS-SVM are given in Table 3.  

Table 2.  Evaluation of CV-KNN classifiers. 

Methods Acc (%) P (%) R (%) 
3-fold KNN 92.05 92.26 95.13 
5-fold KNN 89.77 90.38 93.05 
10-fold KNN 94.89 95.20 95.81 

Table 3.  Evaluation of CV-SVM and PSO-SVM classifiers. 

Methods Acc (%) P (%) R (%) 
3-fold SVM 98.86 98.79 98.70 
5-fold SVM 98.86 98.79 98.70 
10-fold SVM 98.86 98.79 98.70 
PSO-SVM 99.20 99.41 99.47 

 
Table 2. gives the accuracy, precision, and recall of the 

3-fold, 5-fold, and 10-fold CV-KNN classifiers. It is clear that 
the 10-fold CV-KNN outperforms its peers in all the 

parameters. Table 3. gives the parameters of the 3-fold SVM, 
5-fold SVM, 10-fold SVM, and PSO-SVM. The accuracy, 
precision, and recall of the PSO-SVM are 99.20 %, 99.41 %, 
and 99.47 %, which outperforms the other three SVM and the 
CV-KNN classifiers. Among all the classifiers for the 
evaluation, PSO-SVM has been the most competitive choice.  

C.2.  Confusion matrix of different classifiers 
The confusion matrixes of the CV-KNN and CV-SVM 

classifiers are shown in Fig.8. The parameter optimization-
based SVM algorithms give fewer prediction errors than the 
CV-KNN algorithms. Among them, the PSO-SVM shows the 
best performance in the confusion matrix. 

 

Fig.8.  Confusion matrix of KNN and SVM 

D. Results and evaluation 

D.1.  Classification performance for HAR 
The accuracy and algorithm operation time are obtained to 

evaluate the performance of classifiers for HAR, which are 
given in Table 4. 

From the results, the activity recognition accuracy of PSO-
SVM is 99.20 %, which is better than CV-SVM at 98.86 % 
and CV-KNN at 94.89 %. The operation time of PSO-SVM 
for decision-making is 9.23 ms, which also outperforms the 
other two counterparts. 
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Table 4.  Comparision of different classification algorithms in 
accuracy and operation time 

Algorithms Accuracy (%) Operation Time 
(ms) 

CV-KNN 94.89±0.00 14.93±2.44 
CV-SVM 98.86±0.00 11.85±1.31 
PSO-SVM 99.20±0.55 9.23±0.74 

D.2.  Evaluation of single- and dual-sensor nodes network 
To evaluate the contribution of the triaxial accelerometer 

and triaxial gyroscope and demonstrate the superiority of the 
multiple nodes system. The performance of the HAR system 
with accelerometer, gyroscope, and both accelerometer and 
gyroscope are given in Table 5. 

Table 5.  Accuracy and operation time of HAR systems with 
different sensor signals. 

Sensors Accuracy (%) Operation 
Time (ms) 

Accelerometer 85.00±1.08 9.02±0.64 
Gyroscope 93.31±0.56 9.06±0.84 
Acc & Gyro 99.20±0.55 9.23±0.74 

 
From Table 5., the system with both accelerometer and 

gyroscope can provide more features of the activities, and 
therefore provide higher accuracy of recognition. From Table 
6, it is evident that the system with a dual-sensor node's 
network can provide higher accuracy than a single node. 
There is no big difference in operation time since the time-
consuming computations are distributed to the sensor nodes.  

Table. 6.  Accuracy and operation time of single-sensor node and 
dual-sensor nodes network. 

Sensor nodes Accuracy 
(%) 

Operation Time 
(ms) 

Single-node on wrist 98.18±0.59 9.54±1.35 
Single-node on elbow 97.61±0.96 9.21±0.77 
Dual-node on wrist 
and elbow 

99.20±0.55 9.23±0.74 

 
There are related studies of IMU-based HAR reported in 

the literature, such as CNN based method for daily activities 
including walking, upstairs, downstairs, sitting, standing, and 
lying with an accuracy of 93.77 % [12], least-square SVM for 
10 daily activities and 11 sports activities with accuracies of 
98.23 % and 99.55 % respectively [22], kernel extreme 
learning machine for 5 dynamic daily activities and 1 static 
activity with an accuracy of 98.69 % [23], and CNN for 18 
kinds of sports activities with an accuracy of 96.2 % [12]. 
Although the results are obtained with different sensors 
devices, activities, and experimental settings, the accuracy of 
the methods presented in this investigation is competitive. 

5. CONCLUSION 
A miniaturized wearable HAR sensor node architecture 

integrating MEMS-IMU, MCU, and BLE for an unobtrusive 
wearable body area sensing network is proposed. To reduce 
the transmission time of raw sensor data and relieve the 

computational burden of the host machine, the computational 
tasks of pre-processing and feature extraction are distributed 
in the sensor nodes and the classification and application-
specific tasks are allocated to the host machine. The CV-KNN 
and PSO-SVM classification algorithms are employed for 
decision-making. By mounting two sensor nodes on the wrist 
and elbow, the motions of virtual writing of numbers 0-9 with 
a hand in the air are chosen as the activity for experimental 
studies. The proposed hardware and algorithm system is 
tested in the experimental studies with 10 participants each 
repeating the 10 virtual writings 5 times. The results 
demonstrate that the proposed hardware/software co-design 
for integrated sensing and computing can successfully 
achieve the wearable HAR functions, and the PSO-SVM 
outperforms the peer algorithms in accuracy and operation 
time. The low-power wearable sensor network-based HAR 
system presented in this paper can find potential application 
in a smart home for intelligent home appliance control, in 
rehabilitation for patient health recovery evaluation, and in 
sports assistance for kinematic analysis of human body parts 
in sports. 

ACKNOWLEDGMENT 
The work presented in this paper was supported by the 

Department of Human Resources and Social Security of 
Hebei Province under Grants E2019050014 and C20190324, 
the National Natural Science Foundation of China (NSFC) 
under Grant 51805143, and the Natural Science Foundation 
of Hebei province under Grant E2019202131. The authors 
would like to thank the volunteers who participated in the 
experiments and made the research work possible.  

REFERENCES 
[1] Zhang, F. (2020). Human-computer interactive gesture 

feature capture and recognition in virtual reality. 
Ergonomics in Design: The Quarterly of Human 
Factors Applications, 29 (2), 9-25. 
https://doi.org/10.1177%2F1064804620924133  

[2] Wang, Y., Chen, M., Wang, X., Chan, R., Li, W. 
(2018). IoT for next generation racket sports training. 
IEEE Internet of Things Journal, 5 (6), 4558-4566. 
https://doi.org/10.1109/JIOT.2018.2837347  

[3] Wang, L., Sun, Y., Li, Q., Liu, T., Yi, J. (2020). Two 
shank-mounted IMUs-based gait analysis and 
classification for neurological disease patients. IEEE 
Robotics and Automation Letters, 5 (2), 1970-1976. 
https://doi.org/10.1109/LRA.2020.2970656  

[4] Debes, C., Merentitis, A., Sukhanov, S., Niessen, M., 
Fangiadakis, N., Bauer, A. (2016). Monitoring 
activities of daily living in smart homes: Understanding 
human behavior. IEEE Signal Processing Magazine, 33 
(2), 81-94.  
https://doi.org/10.1109/MSP.2015.2503881  

[5] Wang, J., Chen, Y., Hao, S., Peng X.H., Hu, L.S. 
(2019). Deep learning for sensor-based activity 
recognition: A survey. Pattern Recognition Letters, 
119, 3-11. https://doi.org/10.1016/j.patrec.2018.02.010  

https://doi.org/10.1177%2F1064804620924133
https://doi.org/10.1109/JIOT.2018.2837347
https://doi.org/10.1109/LRA.2020.2970656
https://doi.org/10.1109/MSP.2015.2503881
https://doi.org/10.1016/j.patrec.2018.02.010


MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 4, 193-201 

200 

[6] Yang, D., Huang, J., Tu, X., Ding, G.Z., Shen, T., Xiao, 
X.L. (2019). A wearable activity recognition device 
using Air-pressure and IMU sensors. IEEE Access, 7, 
6611-6621. 
https://doi.org/10.1109/ACCESS.2018.2890004  

[7] Oniga, S., József, S. (2015). Optimal recognition 
method of human activities using artificial neural 
networks. Measurement Science Review, 15 (6), 323-
327. https://doi.org/10.1515/msr-2015-0044  

[8] Yan, H., Zhang, Y., Wang, Y.J., Xu, K.L. (2020). 
WiAct: A passive WIFI-based human activity 
recognition system. IEEE Sensors Journal, 20 (1), 296-
305. https://doi.org/10.1109/JSEN.2019.2938245  

[9] Han, J.S., Ding, H., Qian, C., Xi, W., Wang, Z., Jiang, 
Z.P., Shangguan, L.F., Zhao, J.Z. (2016). CBID: A 
customer behavior identification system using passive 
tags. IEEE/ACM Transactions on Networking, 24 (5), 
2885-2898. 
https://doi.org/10.1109/TNET.2015.2501103  

[10] Rahaman, H., Dyo, V. (2021). Tracking human motion 
direction with commodity wireless networks. IEEE 
Sensors Journal, 21 (20), 23344-23351.  
https://doi.org/10.1109/JSEN.2021.3111132  

[11] Mekruksavanich, S., Hnoohom, N., Jitpattanakul, A. 
(2018). Smartwatch-based sitting detection with human 
activity recognition for office workers syndrome. In 
2018 International ECTI Northern Section Conference 
on Electrical, Electronics, Computer and 
Telecommunications Engineering. IEEE, 160-164. 
https://doi.org/10.1109/ECTI-NCON.2018.8378302  

[12] Mekruksavanich, S, Jitpattanakul, A. (2020). 
Smartwatch-based human activity recognition using 
hybrid LSTM network. In 2020 IEEE Sensors 
Conference. IEEE, 1-4.  
https://doi.org/10.1109/SENSORS47125.2020.927863
0  

[13] Li, Y., Zhao, K., Duan, M.C., Shi, W., Lin, L.L., Cao, 
X.Y., Liu, Y., Zhao, J.Z. (2020). Control your home 
with a smartwatch. IEEE Access, 8, 131601-131613. 
https://doi.org/10.1109/ACCESS.2020.3007328  

[14] Guo, J.Q., Zhou, X., Sun, Y.C., Ping, G., Zhao, G.X., 
Li, Z.R. (2016). Smartphone-based patients’ activity 
recognition by using a self-learning scheme for medical 
monitoring. Journal of Medical System, 40 (6), 140. 
https://doi.org/10.1007/s10916-016-0497-2  

[15] Ramanujam, E., Perumal, T., Padmavathi, S. (2021). 
Human activity recognition with smartphone and 
wearable sensors using deep learning techniques: A 
review. IEEE Sensors Journal, 21 (12), 13029-13040. 
https://doi.org/10.1109/JSEN.2021.3069927  

[16] Masoud, M.Z., Jaradat, Y., Manaarah, A., Jannoud, I. 
(2019). Sensors of smart devices in the internet of 
everything (IoE) era: Big opportunities and massive 
doubts. Journal of Sensors, 2019, 6514520.  
https://doi.org/10.1155/2019/6514520  

[17] Irene, S., Shwetha, N.M., Haribabu, P., Pitchiah, R. 
(2015). Development of ZigBee triaxial accelerometer 
based human activity recognition system. In IEEE 
International Conference on Computer and Information 
Technology. IEEE, 1460-1466.  
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.201
5.357  

[18] Yen, T., Liao, J.X., Huang, Y.K. (2020). Human daily 
activity recognition performed using wearable inertial 
sensors combined with deep learning algorithms. IEEE 
Access, 8, 174105-174114.  
https://doi.org/10.1109/ACCESS.2020.3025938  

[19] Santoyo-Ramón, J.A., Casilari, E., Cano-García, J.M. 
(2018). Analysis of a smartphone-based architecture 
with multiple mobility sensors for fall detection with 
supervised learning. Sensors, 18 (4), 1155.  
https://doi.org/10.3390/s18041155  

[20] Li, H., He, X., Chen, X., Fang, Y.Y., Fang, Q. (2019). 
Wi-motion: A robust human activity recognition using 
WIFI signals. IEEE Access, 7, 153287-153299.  
https://doi.org/10.1109/ACCESS.2019.2948102  

[21] Mellal, L., Laghrouche, M., Bui, H.T. (2017). Field 
programmable gate array (FPGA) respiratory 
monitoring system using a flow microsensor and an 
accelerometer. Measurement Science Review, 17 (2), 
61-67. https://doi.org/10.1515/msr-2017-0008  

[22] Hsu, Y.L., Yang, S.C., Chang, C.H., Lai, H.C. (2018). 
Human daily and sport activity recognition using a 
wearable inertial sensor network. IEEE Access, 6, 
31715-31728. 
https://doi.org/10.1109/ACCESS.2018.2839766  

[23] Tian, Y.M., Zhang, J., Li, L.P., Liu, Z.J. (2021). A novel 
sensor-based human activity recognition method based 
on hybrid feature selection and combinational 
optimization. IEEE Access, 9, 107235-107249.  
https://doi.org/10.1109/ACCESS.2021.3100580  

[24] Hassan, M.M., Uddin, M.Z., Mohamed, A., Almogren, 
A. (2018). A robust human activity recognition system 
using smartphone sensors and deep learning. Future 
Generation Computer Systems, 81, 307-313.  
https://doi.org/10.1016/j.future.2017.11.029  

[25] Janarthanan, R., Doss, S., Baskar, S. (2020). Optimized 
unsupervised deep learning assisted reconstructed coder 
in the on-nodule wearable sensor for human activity 
recognition. Measurement, 164 (3), 108050. 
https://doi.org/10.1016/j.measurement.2020.108050  

[26] Iloga, S., Bordat, A., Kernec, J.L., Romain, O. (2021). 
Human activity recognition based on acceleration data 
from smartphones using HMMs. IEEE Access, 9, 
139336-139351. 
https://doi.org/10.1109/ACCESS.2021.3117336  

[27] Coelho, Y.L., Santos, F., Frizera-Neto, A., Bastos-
Filho, T.F. (2021). Lightweight framework for human 
activity recognition on wearable devices. IEEE Sensors 
Journal, 21 (21), 24471-24481. 
https://doi.org/10.1109/JSEN.2021.3113908  

https://doi.org/10.1109/ACCESS.2018.2890004
https://doi.org/10.1515/msr-2015-0044
https://doi.org/10.1109/JSEN.2019.2938245
https://doi.org/10.1109/TNET.2015.2501103
https://doi.org/10.1109/JSEN.2021.3111132
https://doi.org/10.1109/ECTI-NCON.2018.8378302
https://doi.org/10.1109/SENSORS47125.2020.9278630
https://doi.org/10.1109/SENSORS47125.2020.9278630
https://doi.org/10.1109/ACCESS.2020.3007328
https://doi.org/10.1007/s10916-016-0497-2
https://doi.org/10.1109/JSEN.2021.3069927
https://doi.org/10.1155/2019/6514520
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.357
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.357
https://doi.org/10.1109/ACCESS.2020.3025938
https://doi.org/10.3390/s18041155
https://doi.org/10.1109/ACCESS.2019.2948102
https://doi.org/10.1515/msr-2017-0008
https://doi.org/10.1109/ACCESS.2018.2839766
https://doi.org/10.1109/ACCESS.2021.3100580
https://doi.org/10.1016/j.future.2017.11.029
https://doi.org/10.1016/j.measurement.2020.108050
https://doi.org/10.1109/ACCESS.2021.3117336
https://doi.org/10.1109/JSEN.2021.3113908


MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 4, 193-201 

201 

[28] Ando, B., Baglio, S., Lombardo, C.O., Marletta, V. 
(2016). A multisensor data-fusion approach for ADL 
and fall classification. IEEE Transactions on 
Instrumentation and Measurement, 65 (9), 1960-1967. 
https://doi.org/10.1109/TIM.2016.2552678  

[29] Webber, M., Rojas, R.F. (2021). Human activity 
recognition with accelerometer and gyroscope: A data 
fusion approach. IEEE Sensors Journal, 21 (15), 
16979-16989. 
https://doi.org/10.1109/JSEN.2021.3079883  

[30] Kok, M., Hol, J.D., Schon, T.B. (2017). Using inertial 
sensors for position and orientation Estimation. 
Foundations and Trends in Signal Processing, 11 (1-2), 
1-153. http://dx.doi.org/10.1561/2000000094  

[31] Melgani F., Bazi, Y. (2008) Classification of 
electrocardiogram signals with support vector machines 
and particle swarm optimization. IEEE Transactions on 
Information Technology in Biomedicine, 12 (5), 667-
677.  
https://doi.org/10.1109/TITB.2008.923147  

.

Received January 01, 2022 
Accepted April 20, 2022 

https://doi.org/10.1109/TIM.2016.2552678
https://doi.org/10.1109/JSEN.2021.3079883
http://dx.doi.org/10.1561/2000000094
https://doi.org/10.1109/TITB.2008.923147

