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Abstract: In a Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) method, multiple antennas can 
be used on either the transmitter or receiver end to improve the system capacity, data throughput, and robustness. OFDM has been used as 
the modulation system that divides the data stream into multiple parallel low-rate subcarriers. MIMO enhances the system by utilizing spatial 
diversity and multiplexing abilities. Modulation classification in the MIMO-OFDM systems describes the process of recognizing the 
modulation scheme used by the communicated signals in a MIMO-OFDM communication system. This is a vital step in receiver design as 
it enables proper demodulation of the received signals. In this paper, an Enhanced Modulation Classification Approach using an Arithmetic 

Optimization Algorithm with Deep Learning (EMCA-AOADL) is developed for MIMO-OFDM systems. The goal of the presented EMCA-
AOADL technique is to detect and classify different types of modulation signals that exist in MIMO-OFDM systems. To accomplish this, 
the EMCA-AOADL technique performs a feature extraction process based on the Sevcik Fractal Dimension (SFD). For modulation 
classification, the EMCA-AOADL technique uses a Convolution Neural Network with Long Short-Term Memory (CNN-LSTM) approach. 
Finally, the hyperparameter values of the CNN-LSTM algorithm can be chosen by using AOA. To highlight the better recognition result of 
the EMCA-AOADL approach, a comprehensive range of simulations was performed. The simulation values illustrate the better results of 
the EMCA-AOADL algorithm. 
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1. INTRODUCTION 

Wireless communication is considered an extremely 

important and major development in today’s world. Wireless 

communication systems require enormously higher data rates 

and greater transmission reliability to meet the rapidly 

increasing demands for multimedia applications such as high-

quality video and audio [1]. In communication systems, novel 

wireless applications depend on Multiple Input Multiple 

Output (MIMO) technology [2]. MIMO can improve data 

capacity through spatial multiplexing, i.e., data transmission 

in parallel streams [3]. Orthogonal Frequency Division 

Multiplexing (OFDM) is a multi-carrier transmission method 

in which the frequency band can be divided into different 

orthogonal sub-bands, making the symbol transmitted in each 

sub-band subject to non-selective frequency fading [4]. The 

channel equalization is then decreased to a one-tap filter per 

data symbol. The integration of MIMO transmission and 

OFDM data modulation is the key requirement for Fourth-

Generation (4G) wireless technology. 

Automatic Modulation Recognition (AMR) is an 

intermediate stage between signal demodulation and 

recognition [5]. This approach can detect the kind of signal 

modulation and thus acquire the data included in the signals 

without knowledge of the system parameters. It has been 

shown that the AMR technique requires the demodulation of 

signals at the receiver end and is also an important link in 

wireless communication, which plays a crucial role in both 

military and civilian domains [6]. In the military sector, AMR 

technology is used to detect interfering data and important 
military data [7]. In the civilian sector, AMR is primarily used 

to monitor the spectrum and detect interference. AMR 

technology can detect the modulation technique of interfering 

signals and authorized user signals, study the characteristics 

of signals, and perform spectrum monitoring. In the following 

years, with the emergence of AMR technology, the 

conventional identification techniques can be roughly divided 

into 2 types, namely, likelihood-based techniques and 

feature-based techniques [8]. Likelihood-based techniques 

are theoretically optimal, but the number of computations can 

be enormous, while feature-based techniques need manual 

feature extraction, leading to recognition results that are 
highly dependent on the knowledge of the experts in feature 

extraction [9]. Therefore, these two identification approaches 
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are no longer suitable for difficult communication systems. 

Recently, researchers in the communication domain use 

standard networks in Deep Learning (DL) systems, which 

include Convolution Neural Network (CNN) and Recurrent 

Neural Network (RNN). AMR is a DL-based modulation 

detection technique that achieved better results than 

conventional modulation recognition approaches [10]. 

2. RELATED WORKS 

In [11], the ahors developed a User Terminal (UT) 

fingerprint placing for multi-cellular large Multiple-Input 

Multiple-Output Orthogonal Frequency Division 

Multiplexing (MIMO-OFDM) approach under non-line-of-

sight conditions. First, the Deep Neural Network (DNN) 

presented a novel network framework for the fingerprint 
localization problem, where the transformer is only based on 

the self-attention mechanism to directly sequence the 

fingerprint areas. In [12], a new Fully Connected-DNN (FC-

DNN)-based MIMO-OFDM Index Modulation (MIMO-

OFDM-IM) for collective identification of transferred 

symbols from each antenna has been developed and its 

efficiency can be analyzed. Kalpana and Kesavamurthy [13] 

proposed a channel estimator based on CNN-Auto Encoder 

(CNNAE) for MIMO-OFDM techniques. CNNAE is one of 

the DL methods that provide video signals as input by 

allocating important learned biases and weights in different 
targets or features for video signals and are able to distinguish 

them from each other. Ge et al. [14] have suggested an 

improved channel equalization system based on DNN. With 

the aim of shortening the convergence period and improving 

the learning ability of DNNs, a classifier of weight technique 

has also been developed to increase the cost function of the 

DNN, which can be called Classification Weighted-DNN 

(CW-DNN). 

Liu and Lu [15] presented a DL to design a non-iterative 

detector, according to the structural sparsity of communicated 

signals in the IM-assisted MIMO-OFDM (IM-MIMO-

OFDM) method. First, the authors developed the 
identification method as a sparse reconstruction issue. 

Second, a DL-based detector called IMNet was developed to 

integrate 2 sub-sets with the standard least square algorithm 

to retrieve the transmitted signal. The authors [16] presented 

a fingerprint-based position for large MIMO-OFDM 

technique using Deep CNN (DCNN). By utilizing most 

benefits of high resolution in the delay and angle domain in a 

large MIMO-OFDM approach, the authors first proposed an 

effective Angle-Delay Channel Amplitude Matrix (ADCAM) 

fingerprint. Then, a DCNN-assisted localization technique 

was developed to address the modeling error in the fingerprint 
similarity calculation. 

In [17], the authors investigate and compare different 

effective pilot-based channel estimation systems using NN 

technology for OFDM technique. The authors introduced 

other applications of DNN for channel estimation in the 

investigated OFDM techniques. Chowdary and Rao [18] 

proposed the Hybrid Mixture Model (HMM) for detecting the 

spectrum in MIMO method and the efficiency is measured 

depending on the estimation parameters such as false alarm 

possibility and identification possibility. The signal obtained 

through the OFDM antenna was used to analyze the spectral 

accessibility, where the Eigen statistics and energy of the 

signal can be generated, which form the input to the HMM. 

This HMM is a combination of Whale Elephant-Herd 

Optimizer (WEHO) and Gaussian Mixture Model (GMM). 

3. THE PROPOSED MODEL 

In this manuscript, we have designed and developed an 

automated modulation recognition technique called 

Enhanced Modulation Classification Approach using an 

Arithmetic Optimization Algorithm with Deep Learning 

(EMCA-AOADL) for MIMO-OFDM systems. The primary 

goal of the presented EMCA-AOADL technique is to detect 

and classify different types of modulation signals that occur 

in MIMO-OFDM systems. To achieve this, the EMCA-

AOADL technique follows an Sevcik Fractal Dimension 
(SFD)-based feature extractor, CNN with Long Short-Term 

Memory (CNN-LSTM)-based modulation classification, and 

an AOA-based parameter tuning. Fig. 1 describes the entire 

procedure of the EMCA-AOADL method. 

A. Feature extractor 

The SFD algorithm is used to derive a feature vector. 

During this phase, the fractal feature in the communication 

signals can be removed using the SFD system [19]. With the 

self-similar size, it is difficult to utilize objects that might not 

be self-similar, and box size is used to overcome this problem. 

During the metric space (𝑋, 𝑑), 𝐴 moves towards M non-

empty emergency cluster of 𝑋. Box with side length of 𝜀, the 

lesser values 𝑁(𝐴, 𝜀) of the box required for covering 𝐴 are 
formulated as: 

 𝑁(𝐴, 𝜀) = {𝑀: 𝐴 ⊂ ∑ 𝑁𝑀
𝑖=1 (𝑥𝑖 , 𝜀)},    (1) 

where 𝑥1, 𝑥2, ⋯ 𝑥𝑀 denote the dissimilar points of 𝑋. Where 

𝜀 potential 0, the box size is expressed in (2): 

 𝐷𝑏 = lim
𝜀→0

𝐼𝑛𝑁(𝐴,𝜀)

𝐼𝑛(1/𝜀)
         (2) 

 

Fig. 1.  Workflow of the EMCA-AOADL technique. 
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As mentioned above, let the signal comprise sequences of 

points (𝑥𝑖 , 𝑦𝑖), and the signal length be 𝑁. Primarily, the 

signal is standardized: 

 𝑥𝑖
∗ =

𝑥𝑖−𝑥min 

𝑥max−𝑥min
, 𝑦𝑖

∗ =
𝑦𝑖−min 

𝑦max−𝑦min 
   (3) 

𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 represent the minimum values among 

𝑥𝑗 , 𝑦𝑗 . 𝑥max, 𝑦max represent the maximum values among 𝑥𝑗 , 𝑦𝑗 . 

Then, the Sevcik fractal dimensional 𝐷 is measured as 

follows: 

 𝐷 = 1 +
 𝑙𝑛(𝐿)+ 𝑙𝑛(2)

 𝑙𝑛[2×(𝑁−1)]
 (4) 

where 𝐿 represents the length of the waveform as: 

 𝐿 = ∑ √(𝑦𝑖+1
∗ − 𝑦𝑖

∗)2 + (𝑥𝑖+1
∗ − 𝑥𝑖

∗)2𝑁−2
𝑖=0  (5) 

B. Modulation recognition using CNN-LSTM method 

In this work, the CNN-LSTM approach can be used for the 
recognition of different types of modulation signals. CNN is 

a kind of DL model with exceptional capabilities in the field 

of pattern detection [20]. The main structural layer assumes a 

filter or kernel which it runs over the data and generates a 

mapping feature. 

 (𝑓 ∗ 𝑔)(𝑐1,𝑐2) = ∑ 𝑓𝑐1,𝑐2
(𝑎1, 𝑎2) ⋅ 𝑔(𝑏1, 𝑏2) (6) 

In (6), 𝑓 represents the data and 𝑔 represents the kernel, 

𝑎1 + 𝑏1 = 𝑐1 and 𝑎2 + 𝑏2 = 𝑐2. Due to the complicated 

convolutional functions, the pooling and convolution layers 

are used to simplify the collected features. Typically, the FC 

layer is used at the architecture end, which is responsible for 

the classification into corresponding groups. 

CNN‐LSTM is a hybrid DL mechanism that attempts to 

synthesize the capabilities of the convolution network and the 
LSTM. The feature extracted by the CNN is passed to the 

LSTM, a structure of the RNN, to capture the temporal 

dependency. Fig. 2 shows the infrastructure of the CNN-

LSTM. 

 

Fig. 2.  CNN-LSTM architecture. 

The memory cell 𝐶𝑧 is the critical re-modelling in RNN: 

 𝑓𝑧 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑧−1, 𝑥𝑧] + 𝑏𝑓) (7) 

 𝑖𝑧 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑧−1, 𝑥𝑧] + 𝑏𝑖) (8) 

 𝐶𝑧𝑒𝑚𝑝 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑧−1, 𝑥𝑧] + 𝑏𝐶) (9) 

 𝑐𝑧 = 𝑓𝑧 ∗ 𝑐𝑧−1 + 𝑖𝑧 ∗ 𝑐𝑧𝑒𝑚𝑝  (10) 

 𝑂𝑧 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑧−1, 𝑥𝑧] + 𝑏𝑜)   (11) 

 ℎ−𝑧 = 𝑜−𝑧 ∗ 𝑡𝑎𝑛ℎ(𝐶−𝑧) (12) 

Here 𝐶,𝑖, 𝑂, and 𝑓 represent the cell activation vector, the 

input gate, the output gate, and the forget gate, which have a 

similar size to the ℎ hidden state. 𝑊 denotes the weight 

matrix. 𝑊𝐶  stands for the weight of activation cells. 
To achieve focal loss for compensating the difficulties of 

typical cross‐entropy loss due to data imbalance problems, a 

modulating feature was multiplied by the cross‐entropy loss.  

 𝐹𝐿(𝑝𝑧) = −(1 − 𝑝𝑧)𝛾𝑙𝑜𝑔(𝑝𝑧) (13) 

where 𝛾 > 0 refers to a tunable focusing parameter. 

C. Parameter tuning using AOA 

Finally, the hyperparameter values of the CNN-LSTM 

approach are chosen by using AOA. AOA starts with the 

population (partially or fully immersed object) [21]. Each 

object assumes an arbitrary acceleration, density, and 

volume. Consequently, all objects have an arbitrary location 

in the fluid. The fitness of each population is evaluated at each 

iteration until telling maximum iteration or ending criteria are 

reached. The AOA improves the required main function 

depending on dissimilar steps. The procedure for using AOA 

to optimize the stability of the system.  

The steps of AOA are described below: 

Initialization: 

First, each object (population) is randomly positioned 

based on (14). Next, the volume and density of the objects are 

randomly initialized based on (15) and (16). Consequently, 

the acceleration of the object is randomly initialized based on 

(17). 

 𝑂𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖), 𝑖 = 1,2, ⋯ , 𝑁    (14) 

 𝜌𝑖 = 𝑟𝑎𝑛𝑑(0,1) (15) 

 𝑉𝑖 = 𝑟𝑎𝑛𝑑(0,1)  (16) 

 𝑎𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (17) 

The upper and lower limitations of the 𝑖𝑡ℎ object are 

represented accordingly as 𝑢𝑏𝑖 and 𝑙𝑏𝑖. 𝑂𝑖 denotes the 

location of the 𝑖𝑡ℎ object with the maximum size 𝑁. The 

density, volume, and acceleration of the object are formulated 

accordingly with 𝑝, 𝑉, and 𝑎. The volume and density are 

randomly distributed in zero and one. 

D. Updating density and volume 

The densities and volumes of objects can be adjusted using 

the following expression: 

 𝜌𝑖
𝑡+1 = 𝜌𝑖

𝑡 + 𝑟𝑎𝑛𝑑 × (𝜌𝑏𝑒𝑠𝑡 − 𝜌𝑖
𝑡) (18) 

 𝑦𝑖
𝑡+1 = 𝑦𝑖

𝑡 + 𝑟𝑎𝑛𝑑 × (𝑦𝑏𝑒𝑠𝑡 − 𝑦𝑖
𝑡)   (19) 

where the volume and density of the better objects are 

formulated accordingly as 𝑦𝑏𝑒𝑠𝑡 and 𝜌𝑏𝑒𝑠𝑡. 
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E. Transfer operator and density factor 

The object was exposed to the collision, then all objects 

change their location to reach a state of equilibrium. The 𝑇𝑓 

transfer operator changes the operation stage based on (20). 
The exploration stage (global) is converted to the exploitation 

stage (local). 

 𝑇𝑓 = 𝑒𝑥𝑝 (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
) (20) 

The density factor 𝑑, which decreases, helps AOA to reach 

the near‐global performance as follows: 

 𝑑𝑡+1 = 𝑒𝑥𝑝 (
𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
) − (

𝑡

𝑡𝑚𝑎𝑥
) (21) 

In (20) 𝑇𝑓, varies gradually between 0.0 and 1.0. 𝑑 factor 

decreases gradually with time. 𝑡max shows the maximum 

iteration count. 

The collision of objects occurs when 𝑇𝑓 ≤ 0.5. 

Consequently, the acceleration of the object can be upgraded 

for  𝑡 + 1 iterations according to random material 

acceleration as  

 𝑎𝑖
𝑡+1 =

𝜌𝑚𝑟+𝑉𝔪𝑟×𝑎𝐶𝐶𝑚𝑟

𝜌𝑖
𝑡+1×𝑉𝑖

𝑡+1  (22) 

In (22), the exploration and exploitation changes based on 

the transfer operator. If 𝑇𝑓 ≤ 0.5, the exploration occurs in 

1/3 of the iterations. 

F. Exploration stage (collision between objects) 

Furthermore, there is no collision if 𝑇𝑓 > 0.5. For 𝑓 + 1 

iterations, the acceleration is estimated using the following 

equation. 

 𝑎i
𝑡+1 =

𝜌𝑏𝑒𝑠𝑡+𝑉𝑏𝑒𝑠𝑡×𝑎𝑏𝑒𝑠𝑡

𝜌𝑖
𝑡+1×𝑉𝑖

𝑡+1    (23) 

In (23), 𝑎𝑏𝑒𝑠𝑡  refers to the acceleration of the better object. 

G. Normalize acceleration 

Here, the acceleration of the 𝑖𝑡ℎ object was normalized for 
the calculation of the percentage of change. 

 𝑎𝑖−𝑛𝑜𝑟𝑚
𝑡+1 = 𝑢 ×

𝑎𝑖
𝑡+1−𝑚𝑖𝑛(𝑎)

𝑚𝑎𝑥(𝑎)−𝑚𝑖𝑛(𝑎)
+ 𝑙   (24) 

In (24), the normalization range is within (0.1−0.9). The 

lower and upper boundaries are represented as 𝑙 and 𝑢 

accordingly. Reducing the acceleration factors helps to move 

from local to global solutions. 

H. Update position 

If  𝑇𝑓 ≤ 0.5 (exploration stage), update the location of the 

𝑖𝑡ℎ object for the latest 𝑡 + 1 iteration according to (25). Or, 

if  𝑇𝑓 > 0.5 (exploitation stage), update the location accor-

ding to (26). 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐾1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖

𝑡)   (25) 

𝑥𝑖
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 + 𝐹 × 𝐾2 × 𝑟𝑎𝑛𝑑 × 𝑎𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑇 × 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) 

  (26) 

 𝑇 = 𝐾3 × 𝑇𝑓   (27) 

where 𝑇 differs by the transfer operator and time [𝐾3 × 0.3,1] 

and is estimated by (25). 𝐾1, 𝐾2, and 𝐾3 are constants. 𝑇 starts 

with a lower percentage and then gradually increases until it 

approaches the better location. Consequently, balance the 

exploitation and exploration stages. The flag 𝐹 changes the 

direction of motion based on (28). 

 𝐹 = {
+1 𝑖𝑓 𝑃 ≤ 0.5
−1 𝑖𝑓 𝑃 > 0.5’

 𝑃 = 2 × 𝑟𝑎𝑛𝑑 − 𝐾4 (28) 

I. Evaluation 

Calculate the Fitness Function (FF) for all objects at each 

iteration and compare the better performance for all iterations 

and save the achieved better fitness. 

The AOA method improves an FF to achieve the best 
classifier results. It explains a positive integer to indicate the 

good solution of candidate efficiencies. Here, the reduced 

error rate of the classifier can be taken as FF as written in 

(29). 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

 =
𝑁𝑜.𝑜𝑓𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑜.𝑜𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100    (29) 

4. RESULTS AND DISCUSSION 

The modulation recognition results of the EMCA-AOADL 

method were tested on the modulation signal database, which 

comprises 1600 instances with 8 classes, as shown in Table 1. 

Table 1.  Description of the database. 

Class Number of instances 

2ASK 200 

4ASK 200 

2FSK 200 

4FSK 200 

8FSK 200 

BPSK 200 

16QAM 200 

32QAM 200 

Total instances 1600 

 

In Table 2, the comprehensive classification results of the 

EMCA-AOADL system are examined using 70:30 of the 

Training (TR) set/ Testing (TS) set. Fig. 3 shows the 
modulation recognition results of the EMCA-AOADL 

method at 70% of the TR set. The results illustrate the 

superior performance of the EMCA-AOADL method. For 

2ASK, the EMCA-AOADL method provides 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛 , 

𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 100%, 100%, 100%, 

100%, and 100%, respectively. For 8FSK, the EMCA-

AOADL method also provides 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, 
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and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 99.82%, 99.24%, 99.24%, 99.24%, 

and 99.57%, respectively. Finally, for 32QAM, the EMCA-

AOADL method provides 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 100%, 100%, 100%, 100%, and 100%, 

respectively. 

Table 2.  Modulation recognition results of the EMCA-AOADL 
technique using 70:30 of TR set/TS set. 

Class Accuy Precn Recal Fscore AUCscore 

TR set (70%) 

2ASK 100.00 100.00 100.00 100.00 100.00 

4ASK 99.73 99.29 98.59 98.94 99.24 

2FSK 99.91 100.00 99.27 99.63 99.64 

4FSK 100.00 100.00 100.00 100.00 100.00 

8FSK 99.82 99.24 99.24 99.24 99.57 

BPSK 99.64 97.24 100.00 98.60 99.80 

16QAM 99.82 100.00 98.56 99.28 99.28 

32QAM 100.00 100.00 100.00 100.00 100.00 

Average 99.87 99.47 99.46 99.46 99.69 

Class Accuy Precn Recal Fscore AUCscore 

TS set (30%) 

2ASK 100.00 100.00 100.00 100.00 100.00 

4ASK 99.79 100.00 98.28 99.13 99.14 

2FSK 100.00 100.00 100.00 100.00 100.00 

4FSK 100.00 100.00 100.00 100.00 100.00 

8FSK 100.00 100.00 100.00 100.00 100.00 

BPSK 99.79 98.33 100.00 99.16 99.88 

16QAM 100.00 100.00 100.00 100.00 100.00 

32QAM 100.00 100.00 100.00 100.00 100.00 

Average 99.95 99.79 99.78 99.79 99.88 

 

Fig. 3.  Modulation recognition results of the EMCA-AOADL 
method at 70% of the TR set. 

Fig. 4 shows the modulation recognition results of the 

EMCA-AOADL method at 30% of the TS set. The results 

illustrate the superior performance of the EMCA-AOADL 
system. For 2ASK, the EMCA-AOADL method provides 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 100%, 

100%, 100%, 100%, and 100%, respectively. For 2FSK, the 

EMCA-AOADL method provides 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 

𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 100%, 100%, 100%, 100%, 

and 100%, respectively. Also, for 8FSK, the EMCA-AOADL 

method provides 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 

values of 100%, 100%, 100%, 100%, and 100%, respectively. 

Finally, for 32QAM, the EMCA-AOADL method provides 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 100%, 

100%, 100%, 100%, and 100%, respectively. 

 

Fig. 4.  Modulation recognition results of the EMCA-AOADL 
method at 30% of the TS set. 

Fig. 5 shows an average modulation recognition result of 

the EMCA-AOADL method. The figure shows that the 

EMCA-AOADL method has categorized the 8 types of 

modulation signals. At 70% of the TR set, the EMCA-

AOADL method provides 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 99.87%, 99.47%, 99.46%, 99.46%, and 

99.69%, respectively. At the same time, at 30% of the TS set, 

the EMCA-AOADL method provides 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙, 

𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 99.95%, 99.79%, 99.78%, 
99.79%, and 99.88%, respectively. 

 

Fig. 5.  Average of the EMCA-AOADL method at 70:30 of the 
TR set/TS set. 

Tabl 3.  Comparative results of the EMCA-AOADL method with 
the existing systems. 

Algorithm Accuy Precn Recal Fscore 

EMCA-AOADL 99.95 99.79 99.78 99.79 

GRA Model 98.12 96.15 98.82 96.43 

KNN Model 97.78 96.70 97.63 96.50 

BP Model 95.65 94.55 94.48 96.83 

RF Model 97.76 97.78 95.35 94.63 

BiLSTM-FCN 97.95 97.89 96.65 97.32 

COSBO-BiLSTM 97.06 98.63 96.75 98.27 
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Also based on 𝑝𝑟𝑒𝑐𝑛, the EMCA-AOADL method 

provides a higher 𝑝𝑟𝑒𝑐𝑛  of 99.79%, while the existing GRA, 

KNN, BP, RF, BiLSTM-FCN, and COSBO-BiLSTM 

methods achieved lower 𝑝𝑟𝑒𝑐𝑛 values of 96.15%, 96.70%, 

94.55%, 97.78%, 97.89%, and 98.63%, respectively. Based 

on 𝑟𝑒𝑐𝑎𝑙, the EMCA-AOADL method yields a maximum 

𝑟𝑒𝑐𝑎𝑙 of 99.78%, while the existing GRA, KNN, BP, RF, 

BiLSTM-FCN, and COSBO-BiLSTM methods achieve 

lower 𝑟𝑒𝑐𝑎𝑙 values of 98.82%, 97.63%, 94.48%, 95.35%, 

96.65%, and 96.75%, respectively. These simulation values 

indicate that the EMCA-AOADL method performs better 

compared to the other techniques in various measurements. 

5. CONCLUSION 

In this manuscript, we have presented an automated 

modulation recognition technique called EMCA-AOADL for 

MIMO-OFDM systems. The main objective of the presented 

EMCA-AOADL algorithm is to detect and classify different 

types of modulation signals that occur in MIMO-OFDM 

systems. To achieve this, the EMCA-AOADL technique 

follows an SFD-based feature extractor, a CNN-LSTM-based 

modulation classification, and an AOA-based parameter 

tuning. For modulation classification, the EMCA-AOADL 

technique has used the CNN-LSTM model. Finally, the 

hyperparameter values of the CNN-LSTM algorithm are 

selected using AOA. To emphasize the greater recognition 

solution of the EMCA-AOADL method, a comprehensive 

range of simulations can be performed. The simulation values 

illustrate the promising results of the EMCA-AOADL 

algorithm. 
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