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Abstract: The brain’s Electroencephalogram (EEG) signals contain essential information about the brain and are widely used to support the 

analysis of epilepsy. By analyzing brain behavioral patterns, an accurate classification of different epileptic states can be made. The 

behavioral pattern analysis using EEG signals has become increasingly important in recent years. EEG signals are boisterous and non-linear, 

and it is a demanding mission to design accurate methods for classifying different epileptic states. In this work, a method called Quadrature 

Response Spectra-based Gaussian Kullback Deep Neural (QRS-GKDN) Behavioral Pattern Analytics for epileptic seizures is introduced. 

QRS-GKDN is divided into three processes. First, the EEG signals are preprocessed using the Quadrature Mirror Filter (QMF) and the Power 

Frequency Spectral (PFS) and Response Spectra (RS)-based Feature Extraction is applied for Behavioral Pattern Analytics. The QMF 

function is applied to the preprocessed EEG input signals. Then, relevant features for behavioral pattern analysis are extracted from the 

processed EEG signals using the PFS and RS function. Finally, Gaussian Kullback–Leibler Deep Neural Classification (GKDN) is 

implemented for epileptic seizure identification. Furthermore, the proposed method is analyzed and compared with dissimilar samples. The 

results of the Proposed method have superior prediction in a computationally efficient manner for identifying epileptic seizure based on the 

analyzed behavioral patterns with less error and validation time. 
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1. INTRODUCTION 

The human brain plays an important role in controlling 

human behavior through motor stimuli and consists of 

trillions of neurons. Electroencephalography (EEG) signals 

are analyzed to understand cognitive behavior or patterns in 

brain signals. Pattern analysis techniques have been used 

extensively to differentiate neural activity associated with 

several perceptual or other cognitive states by analyzing EEG 

signals.  

With the help of digital signal processing mechanisms and 

deep learning techniques, EEG signals can be analyzed to 

provide beneficial results for various applications, such as 

neurological disorder detection, brain- computer interface 

investigation, emotion recognition, etc. Deep learning 

techniques are therefore used in EEG signal analysis to 

extract features and classify brain states. 

EEG is generally used in neural engineering, neuroscience 

and as a Brain-Computer Interface (BCI). Accurate 

classifications of EEG signals are essential for BCI. 

Motivated by the above facts, this work aims to investigate 

the classification time and error-based features of stimulated 

EEG signal analysis using a novel method called Quadrature 

Response Spectra-based Gaussian Kullback Deep Neural 
(QRS-GKDN) for Behavioral Pattern Analytics based on 
deep neural networks. 

The structure of the paper is as follows. Section 2 reviews 
the literature works for EEG signal classification based on 
behavioral patterns. Section 3 explains the proposed QRS-
GKDN method. The experimental setup and detailed 
discussion are provided in Section 4. Finally, the conclusion 
is presented in Section 5. 

2. LITERATURE REVIEW 

A hybrid deep learning-based seizure detection, 
XAI4EEG, was proposed in [1]. Deep learning was combined 
with area information by using the frequency band, the EEG 
leads position and their corresponding temporal individuality.  

To assess cognitive abilities and improve the dual 
categorization of EEG signals, the Multi-scale High-density 
Convolutional Neural Network (MHCNN) classification 
method was proposed in [2]. Moreover, EEG frequency band 
features are extracted by multi-dimensional conditional 
mutual information. In addition, the coupling features were 
also converted into multispectral images. However, 
discriminative features were not preserved. 
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The validation using dissimilar EEG signals was designed 

in [3]. Furthermore, a classifier was also used to distinguish 

between two stages. Despite the improvement in accuracy, 

the error factor was not focused. In [4], an iterative learning 

model was proposed with the purpose to speed up the entire 

process and reduce the error in the overall process. 

In [5], spatial and temporal dependencies between time 

points and distinct channels were analyzed for accurate 

classification. Another automated method for emotion 

recognition using forest ensemble classifier was proposed in 

[6]. In this type of ensemble classifier, a tunable Q-wavelet 

transform was used, which in turn ensures accurate 

classification. In [7], a method for mental activity recognition 

using bidirectional Long Short-Term Memory (LSTM) 

neural networks was presented. With this type of bidirectional 

deep learning, accurate classification was ensured in addition 

to error detection. Several machine learning methods for EEG 

analysis with bioengineering applications are presented in 

[8]. In [9], [10] disease prediction based on EEG signals was 

discussed. 

To achieve higher classification accuracy and less time 

consumption, the proposed QRS-GKDN is introduced for 

epileptic seizure identification.  

The contributions of QRS-GKDN are listed below. 

The QRS-GKDN method uses the Quadrature Mirror Filter 

(QMF) for preprocessing.  

A Power Frequency Spectral (PFS) and RS-based Feature 

Extraction algorithm is used to extract relevant features in the 

frequency domain.  

Gradient Kullback–Leibler divergence is applied to a Deep 

Neural Network to enable accurate classification of EEG 

signals via the sigmoid feature.  

3. PROPOSED SYSTEM 

In this section, the proposed models for the preprocessing 

of EEG signals and Epileptic Seizure Recognition dataset are 

explained. An EEG signal classification method called QRS-

GKDN for Behavioral Pattern Analytics is presented. 

Fig. 1 shows the QRS-GKDN diagram, (1) preprocessing 

of EEG signals, (2) Feature Extraction for behavioral pattern 

analysis, and (3) classification of epileptic states by Gaussian 

Kullback–Leibler Deep Neural Classification (GKDN). The 

QRS-GKDN architecture is shown in Fig. 1. 

 

Fig. 1.  Block diagram of QRS-GKDN. 

A. Epileptic Seizure Recognition dataset description 

The Epileptic Seizure Recognition dataset consists of 500 

different files, each file representing a single subject or 

person. All data points represent EEG recording values. So in 

total we have 500 individuals, each of which has 4097 data 

points for a time interval of 23.5 s. Each of the 4097 data 

points has been divided into 23 chunks, with each chunk 

containing 178 data points in a 1 s time interval. Thus, the 

entire dataset has 23 x 500 = 11500 pieces of information in 

each row and each data set contains 178 data points for a time 

interval of 1 s in each column. 

B. Preprocessing EEG signals using QMF  

During recording, various types of artifacts, such as power 

line interference, muscle movements and the environment, 

are combined with the EEG signals. Fig. 2 shows the 

structure of the QMF-based preprocessing model. 

 

Fig. 2.  Structure of QMF-based preprocessing model. 

When inputting the dataset for Epileptic Seizure 

Recognition, the goal is to eliminate the noise and 

interference during the recording of the EEG signals. First, a 

sample vector matrix is formulated and the relevant data 

points are included in the simulation. Second, definite 

coefficients and indefinite coefficients are determined for 

each sample using the QMF function. Finally, the aggregated 

values form the processed (i.e., interference eliminated) EEG 

signals. Let us consider the samples Si with their 

corresponding data points DPj at a different point in time for 

23.5 s. The input vector matrix SVM has been formulated. 

 𝑆𝑉𝑀 = [

𝑆1𝐷𝑃1 𝑆1𝐷𝑃2 … 𝑆1𝐷𝑃𝑛
𝑆2𝐷𝑃1 𝑆2𝐷𝑃2 … 𝑆2𝐷𝑃𝑛
… … … …

𝑆𝑚𝐷𝑃1 𝑆𝑚𝐷𝑃2 … 𝑆𝑚𝐷𝑃𝑛

] (1) 

The above mathematical formulation (1) shows that the 

sample vector matrix SVM is divided in such a way that it 

accommodates 4097 data points in 23 chunks, with each 

chunk having 178 data points in 1 s, respectively. With the 

sample vector matrix SVM, the QMF function remains with 

the division of the total function into definite coefficients and 

indefinite coefficients, respectively. The QMF function is 

represented mathematically as follows.  

 𝑦[𝑛] = (𝑆𝑉𝑀 ∗ 𝐿 ∗ 𝐻)[𝑛] (2) 

In (2), L and H represent the definite coefficients and 

indefinite coefficients. The above function is called QMF 
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because SVMi(n) is called the QMF of SVMi(n) when 

𝑆𝑉𝑀𝑖(𝑛) = 𝑆𝑉𝑀𝑗(−𝑛).  

 𝑦𝐿[𝑛] = ∑ 𝑆𝑉𝑀[𝑖]𝐿[2𝑛 − 𝑖]∞
𝑖=−∞  (3) 

 𝑦𝐻[𝑛] = ∑ 𝑆𝑉𝑀[𝑖]𝐻[2𝑛 − 𝑖]∞
𝑖=−∞  (4) 

With the above coefficient results as in (3) and (4), the 

aggregated values are formulated as follows. 

 𝑦𝐿 = (𝑆𝑉𝑀 ∗ 𝐿)
𝜋

2
 (5) 

 𝑦𝐻 = (𝑆𝑉𝑀 ∗ 𝐻)
𝜋

2
 (6) 

 𝑦[𝑛] = 𝑦𝐿 + 𝑦𝐻 (7) 

With the aggregated values given in (5), (6) and (7), the 

input sample vector matrix is divided into two bands. The 

resulting definite and indefinite coefficients are reduced by a 

factor of 2
𝜋

2
, resulting in a signal that is free of interference 

from the original signal. In this way, the validation time can 

be considerably shortened by denoising the EEG signals. 

C. PFS and RS-based Feature Extraction for Behavioral 

Pattern Analytics 

In this work, the PFS, which is consistent with the RS, is 

used for Feature Extraction for denoised EEG signals. Fig. 3 

shows the structure of the PFS and RS-based Feature 

Extraction for Behavioral Pattern Analytics. 

 

Fig. 3.  Structure of PFS and RS-based Feature Extraction for 

Behavioral Pattern Analytics. 

As shown in Fig. 3, the RS for determining the behavioral 

analytics is modeled with the denoised EEG signals as input. 

The RS function for the corresponding processed EEG 

signals is as follows. 

 𝑦[𝑛](𝑇) =

{
  
 

  
 𝑦[𝑛]𝑖 [1 + (𝑎𝑓 − 1)

𝑇

𝑇𝑃1
] , 0 ≤ 𝑇 ≤ 𝑇𝑃1

𝑎𝑓 𝑦[𝑛]𝑖,                            𝑇𝑃1 < 𝑇 ≤  𝑇𝑃2

𝑎𝑓 𝑦[𝑛]𝑖 (
𝑇𝑃2

𝑇
)
𝑠1
,             𝑇𝑃2 < 𝑇 ≤ 𝑇𝑃3

𝑎𝑓 𝑦[𝑛]𝑖 (
𝑇𝑃2

𝑇𝑃3
)
𝑠1
(
𝑇𝑃3

𝑇
)
𝑠2
,          𝑇 > 𝑇𝑃3

 (8) 

In (8), TP1, TP2 and TP3 denote the three distinct behavioral 

patterns generated at different time intervals T using the 

amplification factor af with respect to the denoised EEG 

signals y[n]i. 

 𝑃𝐹𝑆 = 𝑙𝑖𝑚
𝑇→ ∞

1

𝑇
∫ |𝑦[𝑛](𝑇)|2𝑑𝑡
𝑡𝑛
𝑡0

 (9) 

From (9), the power frequency spectrum PFS is used for 

the denoised EEG signals and the RS. 

D. GKDN for epileptic seizure identification 

The PFS and RS-based Feature Extraction algorithm 

reduces dimensionality. The three distinct behavioral patterns 

(TP1, TP2 and TP3) are extracted. For the five classes 

y = {1, 2, 3, 4, 5}, five maximum individual patterns are 

simply focused on, which is why the features 3 x 5 = 15 are 

also extracted from both trials. 

The input signal PFSn (n = 1, 2, 3…) is transferred to the 

hidden layer in Fig. 3. On the other hand, the hidden layer 

performs the actual calculations. The corresponding EEG 

signal weight is measured as shown below. 

 𝛼𝑖 = 𝐹 ∑ 𝑊𝑖𝑃𝐹𝑆𝑖
𝑛
𝑖=1  (10) 

From (10), it can be seen that Wi represents the connections 

weight and the neurons are represented as n. 15 input layers 

are used since the input features are 15. Also, 2 hidden layers 

are used, which is expressed mathematically as follows. 

 𝑆𝑖𝑚𝑗|𝑖 =
𝑒𝑥𝑝[−(𝑆𝑃𝐹𝑆𝑖−𝑆𝑃𝐹𝑆𝑗)

2
]/ 2𝜎𝑖

2

∑ 𝑒𝑥𝑝[−(𝑆𝑃𝐹𝑆𝑖−𝑆𝑃𝐹𝑆𝑘)
2]/ 2𝜎𝑗

2
𝑖≠𝑘

 (11) 

4. TESTING AND VALIDATION 

The validations are performed with EEG signals from 5 

distinct folders, each with 100 files, where each file denotes 

a single subject or person in Python. The input dataset was 

divided into two sets, namely the training set and the testing 

set. Most of the samples (70%) were used for training, and 

the least (30%) for testing.  

A. Validation time 

The validation time is measured as shown below.  

 𝑉𝑇 = ∑ 𝑆𝑖 ∗ 𝑇𝑖𝑚𝑒 [𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠]
𝑛
𝑖=1  (12) 

In (12), VT stands for the validation time, Si for sample 

subjects and the time required to validate the samples Time 

[Validating samples]. It is calculated in ms. Three different 

methods, QRS-GKDN, XAI4EEG [1] and MHCNN [2] are 

described in Table 1. 

Fig. 4 shows the validation time results obtained with the 

three methods, QRS-GKDN, XAI4EEG [1] and MHCNN [2] 

for 10000 distinct samples each. The validation time with the 

QRS-GKDN method was reduced by 20% compared to [1] 

and by 28% compared to [2]. 
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Table 1.  Tabular representation of the validation time using three 

methods, QRS-GKDN, XAI4EEG [1] and MHCNN [2]. 

Samples  Validation time [ms] 

QRS-GKDN XAI4EEG MHCNN 

1000 250 380 410 

2000 310 400 435 

3000 335 425 490 

4000 350 485 555 

5000 425 565 625 

6000 485 615 685 

7000 535 690 735 

8000 700 785 850 

9000 755 835 955 

10000 835 890 1035 

 

Fig. 4.  Validation time results for distinct EEG samples. 

B. Performance analysis of the error rate 

The error rate ER was calculated as the percentage between 
the number of samples wrongly classified SWC and the total 
samples Si. This is expressed mathematically as shown below.  

 𝐸𝑅 = ∑
𝑆𝑊𝐶

𝑆𝑖
∗ 100𝑛

𝑖=1  (13) 

From (13), the error rate ER, is based on the samples 
wrongly classified and the actual samples.  

 

Fig. 5.  Error rate results for distinct EEG samples. 

The error rate with the corresponding samples is shown in 

Fig. 5. The x-axis represents samples between 1000 and 

10000 and the y-axis represents the error rate. The error rate 

involved in epileptic seizure identification is up to 25% lower 

than [1] and 33% lower than [2]. 

C. Classification accuracy 

The second parameter in the analysis of behavior patterns 
based on EEG signals is the accuracy of classification. In 
other words, classification accuracy refers to the percentage 
ratio of the number of accurate classifications. This is 
expressed mathematically as follows. 

 𝐶𝐴 = ∑
𝑆𝐴𝐶

𝑆𝑖
∗ 100𝑛

𝑖=1  (14) 

From (14), it can be seen that the classification accuracy 
CA is evaluated based on the number of accurate 
classifications AC.  

 

Fig. 6.  Classification accuracy results for distinct EEG samples. 

Fig. 6 shows the classification results obtained with the 

three methods QRS-GKDN, XAI4EEG [1] and MHCNN [2]. 

The classification accuracy is 4% and 7% higher with QRS-

GKDN than with [1] and [2], respectively. 

D. Performance analysis of recall 

The recall is the ratio of the true positive results to the sum 

of the true positive results and the false negative results from 

the input data. 

 𝑅𝑒𝑐𝑎𝑙𝑙 = [
𝑇𝑃

𝐹𝑃+𝐹𝑁
] ∗ 100 (15) 

From (15), sensitivity is measured based on true positive 

TP, false positive FP, and false negative FN. 

 

Fig. 7.  Recall results for distinct EEG samples. 
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Fig. 7 explains the measure of recall considering different 

samples. From Fig. 7, it can be seen that the proposed QRS-

GKDN method has better performance compared to the 

existing methods, namely XAI4EEG [1] and MHCNN [2]. 

The recall is improved by 4% with QRS-GKDN compared to 

[1] and 7% compared to [2]. 

5. CONCLUSION 

In this paper, we proposed a novel behavioral pattern 

analysis QRS-GKDN for epileptic seizure identification from 

EEG signals. The QRS-GKDN method we developed for 

epileptic seizure identification accurately extracts relevant 

features for classification. The experimental result shows that 

the proposed behavioral patterns of EEG signals for epileptic 

seizure identification achieve greater improvement in terms 

of classification accuracy with minimum error rate and 

validation time. 
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