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Abstract: Millions of people worldwide suffer from diabetes, a medical condition that is spreading at an accelerating pace. Numerous studies 
show that risk factors that may arise from diabetes can be avoided if the disease is detected early. The health-care monitoring system has 

benefited greatly from early diabetes prediction made possible by the integration of Deep Learning (DL) and Machine Learning (ML) 
algorithms. The objective of many early studies was to increase the prediction model accuracy. However, DL algorithms often cannot fully 
exploit the potential of the available datasets because they are too small. This study includes a very accurate DL model as well as a novel 

system that integrates cloud services and allows users to directly enhance an existing data set, which can increase the accuracy of DL 
techniques. Therefore, the Long Short-Term Memory (LSTM) model with controller is chosen for efficient type-1 diabetes prediction. 
Experimental validation of the proposed Nonlinear Model Predictive Control (NMPC)_LSTM algorithm method is compared with other 
conventional DL algorithms. The proposed controller method achieves excellent blood glucose set point tracking and the proposed 

algorithms achieves 98.95% accuracy for the obtained data. It outperforms other existing methods with an increase in percentage accuracy 
compared to the Benchmark Pima Indian Diabetes Datasets (PIDD). 
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1. INTRODUCTION 

Diabetes, a chronic disease, has become one of the most 
deadly due to lifestyle changes and its widespread prevalence 
in many countries. Nevertheless, data analysis can prevent 
many deaths [1]. Therefore, diabetes is a major health issue 
in most developing countries, and the healthcare industry 
collects and processes huge amounts of medical data in 
different formats and sizes for people with diabetes [2]. The 
key feature of type-1 diabetes mellitus is the loss of the 
pancreatic islets of Langerhans' insulin-producing beta cells, 
resulting in insulin deficiency. This form can also be 
categorized as idiopathic or immune-mediated. Although 
type-1 diabetes can affect adults or children, most cases are 
immune-mediated, so the condition was once known as 
"juvenile diabetes" [3]. In this blood glucose system, the two 
most common terms used are hypoglycemia and 
hyperglycemia. Low blood sugar can cause a clinical 
condition called hypoglycemia, or low blood glucose. Each 
individual will experience hypoglycemic symptoms 
differently [4]. Traditionally, hypoglycemia is recognized by 
a low blood sugar level accompanied by symptoms that 
disappear as soon as the sugar level returns to normal. Short-

term hypoglycemia can lead to diabetic coma or fainting. 
Insulin resistance or insufficient amounts of insulin are the 
main causes of high blood sugar. This results in diabetes. 
People with diabetes need to adjust their lifestyle and take 
medications such as synthetic insulin or oral diabetic 
supplements to maintain regular blood sugar levels. 

Deep Learning (DL) algorithms have recently attracted 
considerable attention in academic circles and industry due to 
their successful application in a number of research areas, 
including voice recognition, natural language processing and 
brain-computer interface [5]. When developing Machine 
Learning (ML) and DL algorithms, the architecture of the 
learning model can be defined in different ways. A variety of 
options must be able to be explored, as it is often not known 
which is the best model architecture for a particular model. 
The machine should perform this investigation and 
automatically identify the ideal model structure in the ML and 
DL workflow [6]. Hyperparameters are the parameters that 
define the model's structure [7], so the term 
"hyperparameteroptimization" refers to the process of 
identifying the optimal model structure. Thus, the following 
are the contributions of this work: 
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• Construction of switching Nonlinear Model Predictive 
Control (NMPC) systems for insulin and blood sugar 
regulation. Using the traditional open-loop step response 
technique, we first discovered different linear models at 
different operating points to develop a nonlinear 
controller.  

• It consists of an insulin pump, a glucagon pump, a 
control algorithm and a Continuous Glucose Monitor 
(CGM). It is built using state-dependent limitations and 
a heuristic to switch between glucagon and insulin. 

• The attention based Long Short-Term Memory (LSTM) 
considers various effects of features such as time-
varying parameters, uncertainty cases and lack of 
sensitivity to glucose for the patient and controller in the 
present work. 

The remaining parts of this paper are outlined below. 
Section 2 provides a description of the literature review. The 

proposed technique is described in Section 3. The 
performance and result analysis with comparative studies is 
discussed in Section 4. Section 5 outlines a conclusion and 
future work. 

2. RELATED WORKS 

In this section you will find some controllers that had DL 
modes in the past. Based on the Dyna-Q Reinforcement 
Learning Algorithm (QRLA), Giorno et al. (2023) [8] have 
developed a fully automated glycemic management system 
that can autonomously determine the insulin infusion without 
the patient having to provide information about their 
carbohydrate intake (Llangarica et al., 2023) [9]. The Input 
and State Recurrent Kalman Network (ISRKN) integrates an 
input and state Kalman filter into the latent space of a deep 
neural network so that the posterior distributions can be 
computed in closed form and uncertainty can be 
communicated using Kalman equations. Furthermore, the 
developed architecture enables the explicit calculation of the 
meal uncertainty distribution, which is embedded in the filter 
parameters via a probabilistic controller. According to 
Taherinasab et al. (2022) [10], a modified Smith predictor and 
adaptive model reference control are combined to create a 
novel adaptive control structure for time-delayed systems. 
Model Predictive Control and Proportional-Integral-
Derivative are modified to help TD1M patients control their 
blood glucose levels (Matamoros et al., 2021) [11]. To 
counteract the effects of food and exercise and prevent 
hypoglycemia, two control algorithms related to food intake 
and physical activity will be evaluated. An unmanned insulin 
delivery controller device based on a smartphone (Deshpande 
et al., 2022) [12] can help adolescents and youngsters adopt 
and utilize interoperable components. The standard deviation 
of overnight glucose was 43 mg/dL (compared to 
SAP 57.9 mg/dL, P = 0.009), while the coefficient of 
variance was 25.7% (compared to SAP 34.9%, P < 0.001). 
The percentage of time spent connected to the CGM and in 
closed-loop mode was 99.6% and 92.7%, respectively. 

3. PROPOSED METHODOLOGY 

In this work, an extended mathematical patient model for 
the treatment of patients with type-1 Diabetic Mellitus is 
developed, called NMPC with Long Short-Term Memory 
(LSTM) (NMPC_LSTM). This management strategy uses 

both an insulin and a glucagon pump. The AP was developed 
with state-dependent limitations and a heuristic to switch 
between insulin and glucagon. We use a simpler model for 
control and add glucagon and exercise to an existing 
glucoregulatory model for simulation. 

 

Fig. 1.  Block diagram of the proposed methodology. 

A. Dataset description 

The Pima Indian Diabetes Dataset (PIDD) was collected 
fromkaggle (https://www.kaggle.com/uciml/pima-indians-
diabetes-database), the world’s largest community of data 
scientists and machine learners. The National Institute of 
Diabetes and Digestive and Kidney Diseases conducted the 

initial research on PIDD. The dataset's goal is to diagnose and 
predict whether or not a patient has diabetes based on certain 
diagnostic parameters included in the collection. These 
examples were chosen from a larger database under a number 
of restrictions. As a precaution, each patient is a girl of Pima 
Indian ancestry who is at least 21 years old. PIDD consists of 

a total of 768 samples, of which 268 are positive for DM, 
represented by class 1 and 500 are negative for DM, 
represented by class 0, as described in the following attribute 
list: 

1. The number of pregnancies.  

2. An oral glucose tolerance test after two hours that 

measures plasma glucose concentration.  

3. Diastolic blood pressure [mm/hg]. 

4. Skin fold thickness [mm] of the triceps.  

5. Serum insulin [µU/ml] after two hours. 

6. Body mass index [kg of weight / m of height]. 

7. The pedigree function of diabetes. 

8. Years of age.  
We calculated various summary statistics by considering 

the attribute values. For each attribute, these data are as 
follows: mean, standard deviation, minimum, 25%, 50%, 
75% and maximum values. 

B. Nonlinear model predictive controller (NMPC) 

We use a NMPC, which is an extension of the Medtronic 
Virtual Patient (MVP) model expressed as a system of 
coupled stochastic differential equations. We extend it to 

include the meal and glucagon subsystems and represent the 
dynamics between glucose and insulin. The subsystem of 
insulin absorption consists of: 

 𝑑𝐼𝑆𝐶(t) = 𝑘1 (
𝑢𝑏𝑎(𝑡)+𝑢𝑏𝑜(𝑡)

𝐶𝐼 
− 𝐼𝑆𝐶(𝑡)) 𝑑𝑡 (1) 

 𝑑𝐼𝑃(t) = 𝑘2(𝐼𝑆𝐶(𝑡) − 𝐼𝑃(𝑡)𝑑𝑡 (2) 
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where 𝑘1 and  𝑘2 indicate the glucose kinetics, 

𝑘2 = 𝑘1[1/𝑚𝑖𝑛] is the inverse insulin absorption time 
constant, 𝐶𝐼[𝐿/𝑚𝑖𝑛] is the insulin clearance rate and 

𝐼𝑆𝐶 [𝑚𝑈/𝐿] is the subcutaneous insulin concentration. 

𝐼𝑃[𝑚𝑈/𝐿] is the plasma insulin concentration. 𝑢𝑏𝑎 is the 
nominal basal rate and 𝑢𝑏𝑜 is the insulin bolus. The blood 

glucose level and insulin sensitivity are described by 

stochastic differential equations: 

 𝑑𝐼𝐸𝐸𝐹(𝑡) = 𝑝2(𝑆𝐼(𝑡)𝐼𝑃(𝑡) − 𝐼𝐸𝐸𝐹(𝑡))𝑑𝑡 (3) 

𝑑𝐺(𝑡) = [−(𝐺𝐸𝑍𝐼 + 𝐼𝐸𝐹𝐹(𝑡))𝐺(𝑡) + 𝐸𝐺𝑃 + 𝑅𝐴(𝑡) +

              +𝐾𝑔𝑙𝑢𝑄2
𝐺(𝑡) + 𝜎𝐺𝜎𝑆𝑑𝐺(𝑡)]

  (4) 

where 𝐾𝑔𝑙𝑢 𝑖𝑠 the glucose kinetics.  𝑄2
𝐺 and 𝑄1

𝐺  are non-

accessible and accessible compartments. The formula for 

insulin effect is 𝐼𝐸𝐹𝐹[1/𝑚𝑖𝑛], the inverse insulin action time 

constant is 𝑝2 = 𝑘1[1/𝑚𝑖𝑛], the insulin sensitivity is 

𝑆𝐼 [
𝐿

𝑚𝑈

𝑚𝑖𝑛
], the glucose effectiveness is 𝐺𝐸𝑍𝐼[1, 𝑚𝑖𝑛], the 

endogenous glucose production is 𝐸𝐺𝑃[
𝑚𝑚

𝐿
], and the 

diffusion coefficients for glucose and insulin sensitivity are 

𝜎𝐺 and 𝜎𝑆. 𝑅𝐴 [
𝑚𝑚

𝑚𝑖𝑛
], the meal rate of appearance, is: 

 𝑅𝐴(𝑡) =
𝑘𝑚𝐷2(𝑡)

𝑉𝐺
 (5) 

where 𝑘𝑚 is the time constant, 𝐷2(𝑡) is the meal system with 

respective time. Every five minutes, the glucose 
concentration in the blood is measured and sent to the NMPC 

algorithm. The following equations for the manual inputs are 

then solved using the Wiener to calculate a filtered 

approximation of the states used as initial states, 𝑥′0. 

 𝑚𝑖𝑛
[𝑥(𝑡).{𝑢𝑘}𝑁−1]

∅ = ∅ ([𝑥(𝑡)]
𝑡0

𝑡𝑓 , {𝑢𝑘}𝑘=0
𝑁−1) (6) 

Subject to,  

 𝑥(𝑡0) = 𝑥′0 

 𝑥′(𝑡) = 𝑓(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝜃),    𝑡 𝜖 [𝑡0 ,𝑡𝑓] (7) 

 𝑢(𝑡) = 𝑢𝑘,𝑡 ∈ [𝑡𝑘,𝑡𝑘+1],      𝑘 = 0, … 𝑁 − 1 (8) 

 𝑑(𝑡) = 𝑑′𝑘, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1],     𝑘 = 0, … 𝑁 − 1 (9) 

The forecast and control horizon [𝑡0,𝑡𝑓], is 6 hours and 

each of the N control intervals is five minutes long. ∅ 

indicates the concentration factor,  𝑥(𝑡) indicates input for 

prediction model and 𝑢𝑘 indicates control interval. 

 𝑓(𝑡) indicates the filteration state and 𝜃 is the kinetic 

factor,  𝑑(𝑡) is the infinitesimal change of time. Fig. 2 shows 

that the horizon [𝑡0 ,𝑡𝑓] is shifted by one control interval and 

a new measurement is taken only after the first set of modified 

inputs, 𝑢0 is delivered. 

The administration of glucagon or insulin determines the 

objective function. In each instance, it has the form:  

 ∅ = ∫ 𝑝𝑧(𝑧(𝑡))𝑑𝑡 + ∑ 𝑝𝑢(𝑢𝑘)𝑁−1
𝑘=0

𝑡𝑓

𝑡0
 (10) 

where the outputs 𝑝𝑧  and 𝑝𝑢 are penalty functions of the 

continuous glucose monitor if 𝑧(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝜃), where 𝑧 
is the continuous glucose monitor. 

The penalty function is: 

𝑝𝑧 (𝑧) = 𝛼𝑧𝑝𝑧′(𝑧) + 𝛼𝑧(𝑚𝑖𝑛)𝑝𝑧(𝑚𝑖𝑛)(𝑧) + 𝛼𝑧(𝑚𝑎𝑥)𝑝𝑧(𝑚𝑎𝑥)(𝑧)  

  (11) 

Firstly, the deviation of the blood glucose level from the 

set point, 𝑧′ = 6 𝑚𝑚/𝐿, is penalized;  

secondly, (𝑧 < 𝑧𝑚𝑖𝑛 =
4.5𝑚𝑚

𝐿
) hypoglycemia and 

(𝑧 > 𝑧𝑚𝑎𝑥 = 10 𝑚𝑚/𝐿) penalizes hyperglycemia. 

 𝑝𝑧′ (𝑧) =
1

2
(𝑧 − z′)2 (11a) 

 𝑝𝑧(𝑚𝑖𝑛)(𝑧) =
1

2
(𝑚𝑖𝑛 {0,𝑧 − 𝑧𝑚𝑖𝑛})2 (12) 

 𝑝𝑧(𝑚𝑎𝑥)(𝑧) =
1

2
(𝑚𝑎𝑥 {0,𝑧 − 𝑧𝑚𝑎𝑥})2 (13) 

The weights in (11) are 𝛼𝑧 = 1, 𝛼𝑧(𝑚𝑖𝑛) = 106, 

𝛼𝑧(𝑚𝑎𝑥) = 50 when calculating the insulin flow rates and 

𝛼𝑧(𝑚𝑖𝑛) = 0 when calculating the glucagon flow rate. It is 

obvious that the prevention of hypoglycemia has the highest 

priority. 

 

Fig. 2.  Block diagram of NMPC. 

C. LSTM based time series state estimation  

To estimate the state of time series. To cope with learning 

from long-term dependencies, the LSTM uses a complex 

structure with numerous cells and gated units, such as: 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑓) (14) 

 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ(𝑡−1),𝑥𝑡] + 𝑏𝑖) (15) 

 𝐶′𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝑐[ℎ(𝑡−1),𝑥𝑡] + 𝑏𝐶 ) (16) 

 𝐶𝑡 = 𝑓𝑡 × 𝐶(𝑡−1) + 𝑖𝑡 × 𝐶′𝑡  (17) 

 𝑜𝑡 = 𝜎(𝑊0[ℎ(𝑡−1),𝑥𝑡] + 𝑏0) (18) 

 ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ (𝐶𝑡) (19) 
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where 𝑓 stands for the cell's forgetting gate, the weight W, the 

learning bias b and the sigmoid activation function σ, 𝑊𝑖 is 

weight of input gate (14). The input gate, denoted by 𝑖 in (15), 

is used in conjunction with a non-linear (tanh) layer 𝐶′. The 

new value of the cell state is 𝐶′ (16). The standard state 𝐶(𝑡−1) 

multiplied by 𝑓𝑡 , which determines that it is ignored, and the 

created value 𝐶′ multiplied by the input gate value is equal to 

the upgraded state value 𝐶 (17). Finally, the sigmoid gate's 

output, 𝑜, is combined with the cell state 𝐶 to determine 

whether or not patient 𝑥 has type-1 diabetes, using (18) and 

(19). 

4. EXPERIMENTAL RESULTS 

The study was carried out with the Windows 10 operating 

system and an Intel Core CPU. The algorithm was developed 

and tested with Python version 3.7. The system used for the 

research includes 16GB DDR4 RAM, an NVIDIA GeForce 

GTX 1050 Ti SC 4GB GPU and an Intel i3-8100 CPU 

running at 3.6 GHz. The Stability analysis of the proposed 

model with different patient conditions was tested using the 

simulated datasets shown in Fig. 3. The normal, abnormal 

and critical condition of the patients was reported to the 

doctors based on the analysis of the standard deviation factor 

through an automatic indication. 

 

Fig. 3.  Performance analysis of proposed method with existing 
methods. 

In the following part, a brief overview of metrics such as 

accuracy, precision, recall, F1-score and mean square error is 

given before a comparative analysis with existing methods 

such as the QRLA [8] and ISRKN [9] is performed. Table 1 

and Fig. 3 show the performance analysis between the 

existing method and the proposed method. 

The comparative analysis table shows the performance 

evaluation of three different methods: QRLA, ISRKN and the 

proposed NMPC_LSTM, in terms of different parameters. In 

terms of accuracy, which measures the overall correctness of 

the predictions, the proposed NMPC_LSTM method 

significantly outperforms both QRLA and ISRKN, achieving 

an accuracy of 98.95% compared to 89.34% and 78.65%, 

respectively. This indicates that NMPC_LSTM makes the 

most accurate predictions among the three methods. The 

Precision of the proposed NMPC_LSTM is 95.68%, which is 

a significant value compared to the existing techniques of 

QRLA with84.34% and ISRKN with 76.43%. 

Table 1.  Comparative analysis between existing and proposed 
methods. 

Parameters QRLA ISRKN  NMPC_LSTM 

Accuracy 89.34 78.65 98.95 

Precision  84.34 76.43 95.68 

Recall 86.44 85.35 94.32 

F1-score 78.47 77.46 92.50 

MSE 32.45 21.46 12.45 

 
For Recall, the proposed NMPC_LSTM leads with a value 

of 94.32%, which shows the effectiveness of the proposed 

method compared to QRLA and ISRKN, which achieve recall 

rates of 86.44% and 85.35%, respectively. The F1-score is the 

mean of precision and recall, where the proposed 

NMPC_LSTM achieves the highest F1-score of 92.5%, 

showing the good balance, while QRLA and ISRKN achieve 

78.47% and 77.46%, respectively. Finally, Mean Square 

Error (MSE) indicates the difference between the predicted 

and actual values. The developed NMPC_LSTM outperforms 

QRLA and ISRKN with 12.45 compared to 32.45 and 21.46. 

Thus, the proposed NMPC_LSTM shows significant 

performance when analyzed with all metrics. 

5. CONCLUSION 

The proposed NMPC_LSTM is implemented to regulate 

blood glucose even in the presence of sudden fluctuations. 

The developed model is further validated, which shows that 

the accuracy rate has increased but the value of the mean 

square error has decreased. Simulation analysis shows that 

the settling time of the proposed model has been reduced to50 

minutes compared to other recent adoptive controllers. The 

proposed method is also evaluated on simulated diabetes 

datasets achieving a higher accuracy of 98.95%, precision of 

95.68%, recall value of 94.32%, F1-score value of 92.5, and 

MSE of 12.45%. The work will be extended in the future to 

include real-time design of a controller with optimization 

techniques and best feature selection methods to improve the 

performance of the generalization system and test cost-

effective services for the real world. 
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