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Abstract: This work proposes an optimized support vector model and a variable ranking-based test node selection approach for identifying 

parametric faults in analog circuits using a fault dictionary. Test node selection is essential for fault dictionary-based fault detection to reduce 

the dimensionality and test process complexity. To determine an appropriate set of test nodes, a feature selection technique based on variable 

ranking is used, as it is computationally efficient and involves sorting and score estimation. In the proposed method, test nodes are ranked 

using a score function based on data variability, where the nodes with the highest data variability are assigned the highest rank. This ranking 

ensures that the most informative test nodes are prioritized for fault detection. An optimized support vector model is used for fault diagnosis 

to improve classification accuracy. The results show the effectiveness of this approach. The performance of the proposed method is validated 

by measuring the fault detection accuracy on benchmark circuits. 
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1. INTRODUCTION 

Fault diagnosis in analog circuits is defined as the process 

of identifying whether the circuit under test (CUT) is faulty 

or not, and in case of faulty it aims to locate the faulty 

component. Fault diagnosis in analog circuits is divided into 

the categories of simulation before testing (SBT) and 

simulation after testing (SAT). In simulation before testing, 

the CUT is simulated using simulation software before 

a practical or real-time test is carried out. The CUT response 

is recorded for different fault cases of the components of the 

CUT, variations of the manufacturing process parameters and 

for different input conditions. The SBT technique helps the 

designer to analyze and solve problems related to the design 

before production or manufacturing. In simulation after 

testing, the simulation is performed once the design is 

available in the form of a physical product. Simulation and 

testing is carried out to understand the characteristics of 

a physical system under different operating conditions. SAT 

also helps the designer to analyze and understand the 

problems in the physical system and optimize the system 

design for better performance. Faults in an analog circuit are 

classified into soft faults or parametric faults and hard faults 

or catastrophic faults. Soft or parametric faults are defined as 

parameter deviation outside the tolerance limit that causes 

degradation  in  system   performance or inaccurate response. 

 Hard or catastrophic faults are open circuit and short circuit 

faults. These faults completely override the function of the 

CUT and are responsible for the CUT’s incorrect response. 

Therefore, the identification of these faults in analog circuits 

is crucial as these faults lead to the destruction of the circuit 

components and eventually the circuit. Numerous techniques 

have been developed to diagnose soft and hard faults, and 

automation of fault diagnosis is necessary to shorten the time 

for diagnosis and improve fault detection accuracy. In recent 

years, machine learning algorithms have been used to identify 

and classify fault types in analog circuits. In [1], fault 

detection is performed based on a convolutional neural 

network. Fast Fourier transform and principal component 

analysis are used to create fault dictionaries with reduced 

dimensions. SBT methods are generally based on a fault 

dictionary. The fault dictionary of an analog circuit contains 

simulation results of a CUT with a faulty component and its 

value as well as the CUT’s response in terms of voltage level, 

gain, bandwidth, current level, etc. In [2], a deep learning-

based technique is used for fault diagnosis and prediction. It 

also explains the challenges of deep learning-based methods 

in terms of unbalanced data handling, data fusion and fault 

types. Support vector machine (SVM)-based fault diagnosis 

methods are proposed in [3]. SVMs are often used to classify 

analog circuit faults as they can handle larger amounts of data 

     Journal homepage:  https://content.sciendo.com 

mailto:puvaneswari@cit.edu
https://orcid.org/0000-0001-9999-0283
https://content.sciendo.com/view/journals/msr/msr-overview.xml


MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 1, 30-39 

31 

and provide higher accuracy and faster predictions. In [4], 

a  semi-supervised SVM method is used to classify soft faults 

in analog circuits and a manifold learning algorithm is used 

for feature extraction from the time domain response of the 

CUT and for dimensionality reduction.  

The biggest challenge in analog circuit fault diagnosis is 

the test node selection for testing. This is usually done in SBT 

approaches to reduce dimensions and test time. Test node 

selection in [5] is done by considering factors such as 

measurement accuracy, tolerance of the components, and the 

diagnostic method used. Frequency domain characteristics 

are used as parameters for fault diagnosis.  Frequency domain 

testing is performed in [6]. The proposed method uses fault 

models defined for active and passive components and 

utilizes basic circuit laws to define the faulty element 

parameter. Wavelet transforms and generalized discriminant 

analysis technique based fault diagnosis feature extraction is 

presented in [7]. A generalized multiple kernel SVM is used 

to identify fault classes. To optimize the parameters of SVM, 

the particle swarm optimization (PSO) method is used. In [8], 

a correlation algorithm combined with SVM is used to 

diagnose soft faults in nonlinear analog circuits. Canonical 

correlation algorithm (CCA) is used to improve the feature 

correlation and principal component analysis is used for 

dimension reduction. SVM is used for fault classification. In 

[9] and [10], the application of machine learning and artificial 

intelligence algorithms to the problem of fault diagnosis is 

discussed. They clearly explain the need and importance of 

machine learning algorithms in the development of end-to-

end diagnostic procedures. Discrete wavelet transform and 

SVM-based fault diagnosis techniques in machine health 

monitoring are explained in [11]. Fault detection in control 

systems is discussed in [12]. It explains the use of SVM to 

classify faults and the use of principal component analysis for 

dimension reduction. Kernel-based SVM is discussed in [13]. 

Kernel functions such as the radial basis function, Naïve 

Bayes, and linear and polynomial functions are explained and 

applied to machinery fault detection. The diagnosis is 

performed in three steps: data acquisition, feature extraction, 

and fault classification. Continuous wavelet transform is used 

for feature extraction and kernel-based SVM is used for fault 

classification. In [14]-[22], the significance and use of SVM 

for various classification problems is discussed. The 

advantage of using SVM with kernel features is shown. It is 

found that SVM with kernels can handle non-linear decision 

boundaries and that overfitting in data processing can be 

avoided by controlling the regularization parameters of SVM. 

Overfitting occurs when a machine learning model cannot 

accurately predict new data. Optimal regularization 

parameters are determined by genetic algorithms [19], 

holoentropy life choice optimization [21], PSO optimization 

[20], and Bayesian algorithms [22]. It can be observed that by 

tuning the SVM parameters, the accuracy of the SVM model 

can be improved to achieve optimal results. 

The proposed analog circuit fault diagnosis uses an 

optimized SVM for fault classification and test node selection 

based on the statistical parameters of the circuit response to 

minimize the test time. Section 1 of this paper introduces the 

concept of fault diagnosis in analog circuits and the existing 

methods. Section 2 explains the proposed fault diagnosis 

method and section 3 presents the results and conclusions. 

Section 4 concludes the presented work. 

2. ANALOG CIRCUIT FAULT DIAGNOSIS PROCEDURE 

Fault diagnosis in analog circuits is still an open problem 

and more new methods need to be developed to achieve the 

goals of diagnosis. The main objectives of analog circuit fault 

diagnosis are to identify the faulty condition of a CUT, locate 

the faulty component, and determine the extent of the 

deviation in the component that causes an anomaly in the 

CUT’s response. Fig. 1 shows the stages of fault detection 

and localization in analog circuits. 

 

Fig. 1.  Analog circuit fault diagnosis procedure. 

An analog circuit is usually tested using a technique called 

fault dictionary-based fault diagnosis. In this technique, 

a dictionary of fault signatures is created for various known 

circuit fault conditions. Circuit response to different fault 

conditions is measured to obtain the fault signatures. The 

behavior of the circuit is measured by injecting known faults 

such as open circuit, short circuit, and component 

degradation, into the CUT. The fault dictionary is created by 

storing the measured or simulated responses of the circuit for 

each fault condition. The entry corresponding to a specific 

fault condition is called a fault signature in dictionary-based 

techniques. When a fault is suspected, the CUT’s response is 

measured and compared with the fault signatures stored in the 

dictionary. To identify the closest match, the similarity 

between the measured response and each fault signature in 

the dictionary is calculated using appropriate measures. Once 

the fault has been detected, the faulty component is identified 

using additional diagnostic methods. Although fault 

dictionary-based techniques have proven to be powerful, they 

face many challenges, such as a high-dimensional fault space 

due to a wider range of fault types, measurement variability 

due to factors such as component tolerances, and 

instrumentation inaccuracies, discrepancies between 

simulated fault signatures and actual measurements, fault 

coverage, complexity of the CUT, and  time required to create 

and update fault dictionaries to account for circuit design 

changes and fault behavior. Therefore, to improve the 

effectiveness of fault dictionary-based fault diagnosis in 

analog circuits, diagnostic techniques such as model-based 

analysis and machine learning-based fault detection are 

preferred.  
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A. Test node selection 

The test node selection refers to the process of identifying 

suitable nodes for fault diagnosis and testing CUT 

functionality. The test node selection must take into account 

accessibility, maximum fault coverage, cost, test equipment 

requirements, test time, and valuable diagnostic information. 

Testing analog circuits is becoming more and more difficult 

due to the increasing complexity of the circuits. Test costs 

play an important role in determining overall manufacturing 

costs and product costs. Test time is one of the factors that 

determine test costs. Test time is proportional to the degree of 

complexity of the CUT and the number of nodes used for 

testing. The amount of data required for testing is also 

determined by the degree of complexity of a CUT and the 

number of test nodes. This shows the need for test node 

selection in fault diagnosis. Test node selection is therefore 

about identifying suitable nodes in order to carry out fault 

diagnosis at the lowest possible cost. Fault coverage is the 

decisive component in the selection of test nodes. It is defined 

as the ratio between the number of successfully detected 

faults and the total number of faults.  

The test node selection in this proposed work is performed 

using the variable ranking method. Variable ranking is 

defined as the process of ranking the test nodes or variables 

based on the feature relevance measure (scoring function). In 

the variable ranking method, the highest ranked (rank 1) 

variables are determined on the basis of the feature relevance 

measure or the variable relevance measure. It is used to 

identify and remove test nodes that are least important from 

the set of nodes available for the test. The variables with the 

highest rank (rank 1) are selected for fault classification. This 

method is preferred here over the other complicated methods 

as it involves simple computation and it is a straightforward 

process of ordering or ranking the test nodes according to the 

measure. In the proposed work, the variables are ranked based 

on the standard deviation measure. The standard deviation is 

used to measure the dispersion of node voltages in the fault 

dictionary dataset. A higher value of standard deviation 

indicates a high variability of the data and is therefore 

preferred when localizing faults. The block diagram shown in 

Fig. 2 illustrates the procedure for test node selection. 

 

Fig. 2.  Test node selection. 

Fig. 2 explains the process of test node selection using the 

variable ranking method. For the given fault dictionary of 

a CUT, the standard deviation for each test node (feature) is 

calculated to measure the data variability, and the features are 

ranked according to the standard deviation value. This means 

that features with a lower standard deviation are ranked 

lower. In this method of feature or test node selection, the 

rank is calculated by looking at individual nodes. It neglects 

the combination of nodes, i.e. the measurement of data 

variability considering two or more nodes together. This 

means that there could be test nodes that data variability when 

considered together, but a lower variability when considered 

individually. At the same time, the nodes could have higher 

data variability when considered individually, but a high 

correlation when considered together. To avoid this, the 

proposed method finds the subset of test nodes for fault 

diagnosis by considering combinations of features to evaluate 

data variability and for improved performance. By 

considering subsets of features, the combination of feature 

ranking can potentially capture interactions between features, 

which improve the predictive performance and provides 

a more thorough assessment of feature relevance. However, 

due to the combinatorial explosion of possible feature 

combinations, it is slower than single feature ranking, 

especially for large feature sets. Compared to single feature 

ranking, it is more complicated to implement and interpret, 

requires more computational resources and may not be 

practical for datasets with many features. To summarize, 

ranking a single feature is usually faster and computationally 

more efficient than ranking a combination of features. On the 

other hand, a combination of features can provide better 

predictive performance by capturing the interactions between 

the features.  

Let N be the input fault dictionary with n fault cases and m 

test nodes or features (node voltages) and represented as 

N = [N1, N2, N3, N4, … Nm], where Ni is the ith feature vector 

of length n. The standard deviation σi of the ith feature is 

calculated as follows: 

𝜎𝑖 = √
1

𝑛
∑ (𝑁𝑖𝑗 − 𝑁𝑖)2𝑛

𝑗=1                          (1) 

where Nij is the jth sample of the ith feature and 𝑁𝑖̅̅ ̅  is the  mean 

value of the ith feature. Let M be the target variable. The 

scoring function is defined as: 

𝑠𝑐𝑜𝑟𝑒(𝑖) =  𝜎(𝑖, 𝑀), for 𝑖 = 1,2,3, …  𝑚           (2) 

Test nodes with a higher standard deviation have a higher 

score, indicating greater importance in the test node selection 

process. The features are ranked based on the score: 

𝑅(𝑚) = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝑠𝑐𝑜𝑟𝑒(1), 𝑠𝑐𝑜𝑟𝑒(2), …  𝑠𝑐𝑜𝑟𝑒(𝑚)    (3) 

and the feature subset is obtained with x features:  

𝐹𝑠 =  𝑅(𝑚)[: 𝑥]                                  (4) 

For m number of features, the computation time for single 

feature ranking is approximately:  

𝑂(𝑚𝑇𝑠)                                         (5) 

where Ts is the time required to determine a single feature’s 

relevance and for ranking a combination of features it is 

approximately: 

𝑂(2𝑚𝑇𝑐)                                       (6) 
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where Tc is the time required to evaluate a single subset of 

features. In an exhaustive search, both the number of the 

subsets and the computation time increase exponentially with 

the number of features.  

B. Fault classification 

The faults in the proposed work are identified and 

classified using a SVM model. Machine learning-based 

classification algorithms use training data to predict the class 

of new data points. SVM is a widely used and preferred 

supervised learning model in machine learning-based 

classification problems. SVM classifies faults by constructing 

an optimal hyper plane that maximizes the margin between 

faulty and non-faulty classes. For the given training dataset: 

{(𝑥𝑖,𝑦𝑖)}
𝑖=1

𝑁
, 

where 𝑥𝑖 ∈ 𝑅𝑛 represents the test node measurements and 

𝑦𝑖 ∈ {−1,1} indicates the class labels, the decision boundary 

is defined by: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏                               (7) 

where w is a vector normal to the hyper plane and b is the 

offset. The SVM optimization problem [23] is formulated as: 

𝑚𝑖𝑛
𝑤,𝑏

1

2
||𝑤||2                                       (8) 

subject to the constraints:  

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖                           (9) 

For nonlinear separable data, the soft margin SVM is 

formulated as: 

𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
||𝑤||2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1                       (10) 

subject to:  

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0                   (11) 

where ξi is a slack variable and C is the regularization 

parameter that controls the trade-off between margin 

maximization and the classification error. In the case of 

nonlinear data, the kernel functions transform to a higher 

dimension space. The widely used nonlinear kernel functions 

are given by: 

radial basis function (rbf)   k(x,y) = e-γ||x-y||
2 

                      (12) 

sigmoid                               k(x,y) = tanh (γ(xTy)+r         (13) 

polynomial                            k(x,y) = γ(xTy+r)d                   (14) 

where r is an additive bias term that controls the behavior of 

the kernel function and accordingly the decision boundary in 

SVM, γ is a hyper parameter that determines the range of 

influence of each training point, and d is the degree of the 

polynomial kernel that determines the flexibility of the 

decision boundary. In fault classification, the choice of kernel 

and the hyper parameter tuning have a significant impact on 

accuracy. The most important steps in the optimization and 

evaluation of an SVM model are shown in the block diagram 

in Fig. 3. These include hyper parameter tuning, cross-

validation, training the final model, and evaluating its 

performance on unseen data. The fault dictionary obtained 

from the test node selection process is the dataset used to train 

the SVM model. The hyper parameters of the SVM model 

such as kernel parameters, kernel types and regularization 

parameters are also optimized to improve the performance of 

the model. Cross-validation is used to evaluate the optimized 

hyper parameters and determine how well the model 

performs on unknown data. The test dataset is used to 

evaluate the performance of the trained SVM model and 

measure its generalization performance. 

 

Fig. 3.  SVM optimization. 

PSO and Bayesian algorithms are generally used to 

optimize these hyper parameters. These algorithms reduce the 

computation time for an optimization problem, but only 

provide near-optimal solutions. Exhaustive search is another 

optimization method that searches through a specified range 

of hyper parameters to find the optimal parameters for better 

performance. The computation time of this method is higher 

than PSO and Bayesian algorithms because it searches 

through all possible solutions. But the exhaustive search 

always finds the best solution for an optimization problem 

[24]. Therefore, the proposed fault classification problem 

uses exhaustive search to optimize the SVM hyper 

parameters. Fig. 4 shows the flowchart of the exhaustive 

search method. The exhaustive search is a problem-solving 

technique in which the optimal solution is sought from all 

possible solutions that arise for all possible candidates. 

Although the search method is easy to implement, its 

computation time depends on the number of possible 

candidates. The computation time of the exhaustive search is 

given by O(m), where m is the number of possible candidates. 

To reduce the computation time, the search space or the set 

of possible solutions is reduced. The search starts with the 

initial value of the SVM parameters and checks whether the 

desired classification accuracy is within the parameter range. 

The parameter values are updated and the algorithm selects 

the parameters for which the expected accuracy is achieved.  

When evaluating the performance of a machine learning 

model, cross-validation is a technique used to minimize over 

fitting and under fitting errors. In cross-validation, the entire 

dataset is divided into k folds and the machine learning model 

is trained and tested with different training and test folds. The 

final performance score of a machine learning model is the 

average of all results.  
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Fig. 4.  Flowchart of exhaustive search. 

3. RESULTS AND DISCUSSION 

The performance of test node selection and fault 

identification and localization is verified using benchmark 

circuits such as the Sallen key BPF and the state variable filter 

(SVF). The results are presented for the different stages of 

fault diagnosis, taking into account parametric faults or soft 

faults. The fault dictionary for each component of CUT is 

created considering the component degradation above and 

below the tolerance limits. The acceptable level of component 

degradation in an analog circuit depends on the performance 

requirements. When there are strict requirements for accuracy 

and stability, even a small amount of degradation is not 

acceptable. In other situations, however, a certain amount of 

degradation may be acceptable as long as it does not 

negatively affect the overall performance. In this work, thirty 

percent to ninety percent degradation above and below the 

tolerance limits of the components are considered. The 

simulation is carried out and node voltages are recorded to 

create the fault dictionary. Test node selection is performed 

taking into account a single feature as well as a combination 

of features. In the case of a combination of features, fifty 

percent of the total test nodes are considered. This means that 

if the CUT contains ten nodes, the subset of test nodes 

selected for fault diagnosis contains five nodes and 25 

combinations are to be evaluated.  The decision to select fifty 

percent of the total nodes is based on an optimal balance 

between fault detection accuracy and computational 

efficiency, as there is always a trade-off between the number 

of test nodes and fault detection accuracy. In the test node 

selection process, test nodes are selected based on high fault 

observability to ensure that faults occurring at different 

locations in the circuit can be effectively distinguished. In 

addition, the nodes that contribute significantly to circuit 

performance variations are considered to ensure that the most 

sensitive nodes are selected while reducing the computation 

burden. The faults are detected using a hyper-tuned or 

optimized SVM model. The performance of the optimized 

SVM model is evaluated in terms of accuracy. It is defined as 

the percentage of fault cases correctly classified by all 

instances.  

A. Sallen key band pass filter 

The Sallen key band pass filter (BPF) is a frequency 

selective network used to extract a specific range of 

frequencies from the input signal and is widely used in signal 

processing, communication and instrumentation systems. It 

consists of a total of 5 nodes, including the input and output 

nodes. The bandwidth of the filter can be adjusted using 

appropriate component values. It contains an operational 

amplifier, five resistors and two capacitors. Fig. 5 shows the 

circuit diagram of a Sallen key BPF with its nominal 

component values. The tolerance limit of all the resistances is 

assumed to be ±5 % and for the capacitances it is assumed to 

be ±1 %. A 500 mV, 60 Hz sine wave is applied to the input 

node (node 1) and the node voltages (magnitudes) are 

measured. The test frequency is selected based on the 

frequency response characteristics of the filter. The fault 

dictionary is created based on these values measured for 

different fault conditions. The 60 Hz frequency was chosen 

as it is within the bandwidth of the filter (Fig. 6). 

 

Fig. 5.  Sallen key BPF. 

The closed loop gain of the filter is given by: 

ACL=1+
Rb

Ra
                               (15) 

The frequency response characteristic is shown in Fig. 6. 

 

Fig. 6.  Frequency response characteristics of BPF. 
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The center frequency at which the maximum response is 

achieved is given by:  

 𝑓𝑜 =
1

2π
√

𝑅3+𝑅1

𝐶1𝐶2𝑅1𝑅2𝑅3
                              (16) 

The test node selection is based on the individual variable 

ranking, and the combinations of variable ranking and the 

variables with the highest data variability are used for fault 

diagnosis. The total number of nodes in the Sallen key BPF 

is 5. Without the input node 1, the total number of test nodes 

is 4. Fig. 7 shows the results for the test node selection with 

the test nodes of the BPF and the rank obtained for individual 

test nodes. The results are obtained using a single node or 

a feature ranking. It can be seen that node 5 (with rank 1) has 

the highest data variability. Therefore, it can be used for fault 

detection. The faults are identified and localized using an 

optimized SVM.  

 

Fig. 7.  BPF individual test node ranking. 

The accuracy of fault classification obtained with an 

optimized SVM is shown in Fig. 8. The results are shown for 

all kernel functions. In the case of a non-optimized SVM, the 

regularization parameter is set to 1 and gamma is estimated 

from the number of test nodes used for testing and the 

variance of the test nodes. It can be observed that the 

optimized SVM shows better performance. Table 1 shows the 

results obtained for hyper parameter tuning using random 

search, Bayesian search with 100 iterations, and PSO with 

100 iterations and a particle size of 10. 

 

Fig. 8.  BPF accuracy of classification single test node. 

Table 1 shows that the exhaustive search achieves a 90 % 

classification accuracy at C = 100 and γ = 0.0127, since the 

exhaustive search tests all possible combinations of the hyper 

parameters of the SVM. In the random search, the hyper 

parameters are selected at random, which can lead to 

suboptimal results due to the lack of systematic exploration 

of the search space. Bayesian search uses probability models 

to find the best hyper parameters, resulting in values that are 

close to the optimum. 

Table 1.  SVM hyper parameters for BPF - single node testing. 

Optimization method Fault detection 

accuracy 

Hyper parameters 

 Kernel Accuracy 

[%] 

 

Random search linear 65 C = 100 

rbf 80 C = 100, γ = 0.012 

poly 55 C = 100, d = 2 

sigmoid 80 C = 100, γ = 0.012 

Bayesian search 

(number of 

iterations = 100) 

linear 70 C = 223.64 

rbf 80 C = 63.65, γ = 1.82 

poly 75 C = 6.01, d = 3 

sigmoid 75 C = 338.98, γ = 0.575 

PSO 

(number of 

iterations = 100, 

particle size = 10) 

linear 65 C = 412 

rbf 80 C = 921.4, γ = 6.9 

poly 55 C = 844.5, d = 2 

sigmoid 70 C = 307.3, γ = 0.12 

Exhaustive search linear 65 C = 100 

rbf 90 C = 100, γ = 0.0127 

poly 70 C = 1000, d = 2 

sigmoid 55 C = 1000, γ = 0.1 

 

PSO uses a population-based search inspired by swarm 

behaviour that efficiently explores the hyper parameter space 

to find near-optimal solutions. However, it does not guarantee 

the absolute best solution as it may converge to a local 

optimum. Fig. 9 shows the results for the test node selection 

considering fifty percent of the total test nodes for fault 

localization. Fig. 8 shows that test nodes 2 and 5 are suitable 

as test nodes as they have the highest data variability among 

the other test node combinations. It can also be observed that 

for single nodes, ranking is calculated for only four nodes, but 

when combinations of test nodes are considered, ranking has 

to be applied for six combinations. This increases the time 

required for ranking or selecting test nodes according to (5) 

and (6). 

 

Fig. 9.  BPF test node ranking. 

Fig. 10 shows the fault detection accuracy achieved for the 

test of two nodes. It shows that with an optimized SVM and 

with rbf and poly kernels, a classification accuracy of 100 % 
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can be achieved when two nodes are used for testing. It can 

also be observed that the use of multiple nodes leads to better 

fault coverage. 

 

Fig. 10.  BPF accuracy of classification - two test nodes. 

Table 2.  SVM hyper parameters for BPF. 

Optimization method Fault detection 

accuracy 

Hyper parameters 

 Kernel Accuracy 

[%] 

 

Random search linear 95 C = 100 

rbf 95 C = 100, γ = 0.0085  

poly 65 C = 100, d = 3 

sigmoid 80 C = 100, γ = 0.0085  

Bayesian search 

(number of 

iterations = 100) 

linear 92 C = 1000 

rbf 95 C = 1.913, γ = 0.9 

poly 90 C = 86.32, d = 3 

sigmoid 90 C = 1000, γ = 0.0417 

PSO 

(number of 

iterations = 100, 

particle size = 10) 

linear 96 C = 831 

rbf 95 C = 200.42, γ = 6.2 

poly 95 C = 256, d = 3 

sigmoid 85 C = 218.57, γ = 0.111 

Exhaustive search linear 100 C = 1000 

  rbf 100 C = 1000, γ = 0.00857 

  poly 95 C = 1000, d = 2 

  sigmoid 45 C = 1000, γ = 0.1 

 

Table 2 shows the results for classification accuracy and 

SVM hyper parameters values for different optimization 

methods. It shows that the fault detection accuracy improves 

as the number of test nodes increases, so that more fault cases 

can be identified. However, this also leads to a longer test 

time. The random search selects the hyper parameters 

randomly, it may miss the optimal solution and due to the 

randomness, different runs may yield different results, 

making it less reproducible compared to other methods. 

However, the exhaustive search ensures that the same results 

are obtained every time with the same dataset and the same 

settings. 

B. State variable filter 

SVF use two operational amplifier integrators and an adder 

to simultaneously generate second order low pass filter 

(LPF), BPF, and high pass filter (HPF) responses. They use 

two operational amplifier integrators and an operational adder 

to obtain the filter responses simultaneously. The SVF 

configuration is shown in Fig. 11. The circuit is tested by 

applying a 1 V, 1 kHz sine wave to node 8 and the node 

voltages at different nodes of the SVF are measured under 

different faulty conditions of the components. A fault 

dictionary is created based on these measurements. The 

circuit is shown with nominal values of all the resistive 

components. It is assumed that all resistance components 

have a tolerance of ±5 % and all capacitances have a tolerance 

of ±1 %. The high pass, band pass and LPF responses are 

obtained at nodes 2, 4, and 6, respectively, as shown in 

Fig. 11. The Laplace transform of the BPF output (VBP) is 

given by: 

     VBP= - 
1

 sR3C1
VHP                                   (17) 

The LPF response is represented by: 

     VLP=-
1

sR4C3
VBP                                      (18) 

and the HPF response is given by:  

    𝑉𝐻𝑃 = −𝑉𝑖 − 𝑉𝐿𝑃 + 𝛼𝑉𝐵𝑃                            (19) 

where the attenuation coefficient:  

𝛼 = (1 +
𝑅2

𝑅1||𝑅5
) (

𝑅6

𝑅6 +𝑅7
)  and Vi=VG1           (20) 

The frequency response of the LPF is shown in Fig. 12.  

 

Fig. 11.  State variable filter. 
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Fig. 12.  Response of the LPF of the SVF. 

The frequency response of the HPF of the SVF from 

Fig. 10 is shown in Fig. 13 and for the BPF of the SVF in 

Fig. 14. 

 

Fig. 13.   Response of the HPF. 

 

Fig. 14.  Response of the BPF.  

The result for the variable ranking when considering 

a single node is shown in Fig. 15. The node that has higher 

data variability is assigned rank 1. Node 6 has the highest 

rank (rank 1), i.e. it is the node with the highest data 

variability. However, more than one node is required to 

improve fault coverage.  

 

Fig. 15.   SVF single test node ranking. 

Fig. 16 shows the results of the variable ranking 

considering fifty percent of the total test nodes. The result  

shows that the highest ranking (rank 1) is obtained for test 

node 126.  

 

Fig. 16.  SVF three test nodes ranking. 
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Therefore, the combination of test nodes 1, 2, and 6 is used 

for testing. Fig. 17 illustrates the fault detection accuracy for 

three test nodes, where a maximum accuracy of 90 % is 

achieved with the rbf kernel with C = 1000 and γ = 0.046.  

 

Fig. 17.   SVF SVM classification accuracy. 

Table 3 and Table 4 show the fault detection accuracy and 

the corresponding SVM hyper parameters for single and 

multiple test node scenarios. For single-node testing, the 

highest fault detection accuracy achieved by exhaustive 

search is 50 %. For multiple-node testing, the accuracy 

increases to a maximum of 90 %. This means that the 

classification accuracy is influenced by both the number of 

test nodes used for the tests and the SVM hyper parameters. 

Table 3.   SVF SVM hyper parameters - single node testing  

Optimization method Fault detection 

accuracy 

Hyper parameters 

  Kernel Accuracy 

[%] 

 

Random search linear 22.22 C = 4.4 

rbf 11.11 C = 100, γ = 0.01 

poly 11.11 C = 35.93, d = 2 

sigmoid 22.22 C = 100, γ = 0.01 

Bayesian search 

(number of 

iterations = 100) 

linear 33.33 C = 1.179 

rbf 16.67 C = 3.08, γ = 0.243 

poly   5.56 C = 74.63, d = 2 

sigmoid 16.67 C = 1000, γ = 0.0013 

PSO 

(number of 

iterations = 100, 

particle size = 10) 

linear 22.22 C = 887.42 

rbf 22.22 C = 267, γ = 0.101 

poly 16.67 C = 256, d = 2 

sigmoid 16.67 C = 154.4, γ = 0.022 

Exhaustive search linear 22.22 C = 100 

  rbf 50 C = 100, γ = 0.092 

  poly 50 C = 1000, d = 2 

  sigmoid 22.22 C = 1000, γ = 0.01 

 
The results show that the exhaustive search thoroughly 

evaluates all possible combinations of hyper parameters and 

that the search is systematic. For the same dataset and the 

same settings, it always yields the same results and is 

therefore absolutely deterministic. In the case of Bayesian 

optimization, search is based on probabilistic models and due 

to the randomness in the selection of the next best candidate, 

the reproducibility is somewhat lower. However, with proper 

settings, e.g. a higher number of iterations, reproducibility 

and better classification accuracy can be achieved.  

Table 4.  SVF SVM hyper parameters. 

Optimization method Fault detection 

accuracy 

Hyper parameters 

 Kernel Accuracy 

[%] 

 

Random search linear 22.22 C = 12.9 

rbf 50 C = 100, γ = 0.034 

poly 27.78 C = 100, d = 2 

sigmoid 27.78 C = 100, γ = 0.01 

Bayesian search 

(number of 

iterations = 100) 

linear 55.6 C = 157.8 

rbf 66.67 C = 1000, γ = 0.207 

poly 66.67 C = 1000, d = 3 

sigmoid 44.44 C = 769.83, γ = 0.0086 

PSO 

(number of 

iterations = 100, 

particle size = 10) 

linear 50 C = 191.37 

rbf 50 C = 267.13, γ = 0.172 

poly 37 C = 152, d = 3 

sigmoid 27.78 C = 261.3, γ = 0.0158 

Exhaustive search linear 88 C = 100 

  rbf 90 C = 1000, γ = 0.046 

  poly 89 C = 1000, d = 3 

  sigmoid 28 C = 1000, γ = 0.01 

4. CONCLUSION 

This article proposes an optimized SVM-based 

classification technique along with a variable ranking 

mechanism for fault detection in analog circuits. Appropriate 

test nodes are selected from the collection of nodes in the 

CUT to reduce the time required for fault diagnosis. The data 

variability metric is used to select the test nodes, and the node 

subset with the highest data variability is given a higher rank. 

The node subset with the highest rank is used for fault 

detection. Test node selection takes into account both 

individual nodes and node combinations at the same time. 

The ranking method requires less time for single node 

rankings. However, a mix of nodes is selected for testing to 

achieve better performance. Certain test nodes may have low 

data variability when considered individually and high data 

variability when considered collectively. It has been found 

that optimized test node selection strategies can lead to better 

performance. Optimal support vector machines are used to 

classify faults. A comparison is made between SVM and the 

improved optimized SVM. It was found that a significant 

improvement is possible with the optimized SVM.   
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