
MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 1, 40-47 

DOI: 10.2478/msr-2025-0006  *Corresponding author: daixdhz@foxmail.com (X. Dai)  

40 

 

 

 

Research on the Error Estimation Method for Electric Energy 

Meters of Electric Vehicle Charging Piles based on Deep 

Learning 

Juan Wang1, Wei Liu1, Yong Zhang1, Zhi Liu1, Xiaolei Zheng1, Yuxin Wang1, Jianshu Hao1,  

Xuanding Dai 2* 

1Inner Mongolia Electric Power (Group) Co., Ltd. Baotou Branch, Baotou, Inner Mongolian, China 
2College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, Zhejiang, China 

Abstract: In the context of the increasing spread of electric vehicle (EV) charging stations, the accuracy and reliability of electric energy 

measurement is becoming increasingly important for consumers. Degradation in the performance of smart meters at these stations is often 

due to factors such as aging and malfunctions. Traditional approaches to solving this problem usually involve manual on-site inspections, 

which require significant investment in manpower and materials. To overcome this challenge, this study proposes an error estimation method 

that integrates highway convolutional neural networks with bidirectional long short-term memory (LSTM) networks, which enables real-

time prediction of measurement performance at charging piles. First, the convolutional module is combined with the highway network to 

extract spatial features from smart meter data for charging facilities while retaining some original information to improve model prediction 

performance. The features are then fed into a bidirectional LSTM network to obtain temporal characteristics, which improves the accuracy 

of relative error predictions. Empirical validation of this method at a charging station in the region has shown that it has higher efficiency 

compared to existing advanced models. 

Keywords: electric vehicle charging piles, smart meter, highway network, convolutional neural network, bidirectional long short-term 
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1. INTRODUCTION 

The growing number of electric vehicle (EV) users has 

drawn attention to the operation and services of EV charging 

facilities, particularly in terms of the accuracy of 

measurement and charging safety. Accurate and reliable 

energy measurement and fair billing have a direct impact on 

the interests of the majority of charger users [1], [2]. 

Currently, the management of EV charging stations from the 

same batch is usually based on extrapolating the operational 

status of the entire batch based on a certain proportion of 

sampled verification results. This approach determines 

whether the entire batch of meters should be replaced or their 

use extended. However, the wide distribution, large number 

and varying quality of charging facilities [3], [4] require 

considerable human and material resources, which makes it 

difficult to carry out on-site sampling inspections. In addition, 

sampling methods are susceptible to false positives and 

negatives, in which can lead to financial losses for both the 

operational maintenance departments and users. 

The measurement errors in charging piles are primarily due 

to the deterioration of electric meter performance. Over time, 

the internal electronic components of the meters are affected 

by high temperatures, electromagnetic fields, mechanical 
stresses, and aging, which reduces the reliability of the 
measurement results [5]. Consequently, researchers have 
extensively explored error source detection, error modeling, 
and error assessment [6], to reduce the economic losses 
caused by these errors. Wei et al. [7] have developed a remote 
calibration and monitoring system that includes monitoring 
equipment, a communication network, and a main station. 
However, the detection of measurement errors requires the 
installation of numerous standard end devices, which 
increases investment and operation maintenance costs. The 
current verification methods do not fully meet the 
requirements of regular checks, which prompts the 
exploration of novel technologies and methods to efficiently 
monitor and control the measurement performance of 
charging facilities [8]. 

With the rapid progress in information technology, a large 
amount of data from electric meters can be collected, 
transmitted, and stored, which facilitates the online prediction 
of meter measurement performance [9]. At present, online 
error analysis of electric meters is mainly divided into two 
categories, including methods based on least squares and 
deep learning. 
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Least squares based methods primarily use the con-

servation of energy equation to formulate online error 

analysis models that offer high interpretability. Liu et al. [10] 

proposed a linear equation model for remote estimation that 

uses the k-means clustering method and regularization theory 

to estimate errors in smart meters. However, the model may 

yield ill-conditioned equations. To address the ill-

conditioning of linear systems, Xie et al. [11] introduced 

a data optimization algorithm based on a greedy strategy for 

filtering data and incorporating L2 regularization to mitigate 

solution variability. At the same time, Kong et al. [12] 

addressed the problem of data saturation and ill-conditioning 

by proposing an error estimation method that uses a limited 

memory recursive least squares algorithm. 

However, the electrical environment of charging facilities 

is complex and has numerous sources of error, including 

losses in charging piles, transmission lines, and charging 

stations. Current systems lack refined modeling for each unit, 

making it difficult to develop accurate mechanistic models 

for practical use and accurate error estimation in smart 

electric meters. Furthermore, grid losses are subject to 

frequent and significant fluctuations due to the influence of 

load flow and the operational state of the grid. Incorporating 

these fluctuations into the energy conservation equation can 

affect the stability, accuracy, and applicability of the model. 

In the course of the further development of deep learning, 

researchers have also used neural networks (NN) to analyze 

electric meter data [13], [14]. Given the pronounced 

nonlinear relationship between electric meter data and 

measurement performance, Amarbayasgalan et al. [15] 

introduced an unsupervised anomaly detection method based 

on deep learning principles. Anomalies are detected based on 

whether the reconstruction error exceeds a predefined 

threshold. However, the manual setting of the anomaly 

threshold compromises the robustness of the model. Wang et 

al. [16] used a backpropagation (BP) neural network to 

diagnose anomalies in smart meters within an electrical grid 

system. However, these two methods only provide 

a qualitative assessment of the meter status as normal or 

abnormal without providing a quantitative representation of 

the meter's relative error, so they do not accurately reflect the 

specific condition of the meter's measurement performance. 

Chen et al. [17] employed fuzzy C-means clustering for data 

preprocessing, and categorized the operational status of each 

measurement before building an error estimation model 

through an adaptive gradient descent approach. However, the 

model does not consider the temporal aspects of the 

electricity usage process, so the temporal evolution of 

changes in meter performance is not captured. Dong et al. 

[18] used a hybrid long short-term memory (LSTM) - based 

model for error analysis on small datasets, but important 

information was lost during the clustering and denoising 

phases. Xia et al. [19] developed a relationship model linking 

the distributed system measurement correction coefficient, 

network loss, and energy consumption measurement values 

using the K-means algorithm and BP neural network. 

However, the approaches have not been specifically tailored 

to the unique characteristics of smart electric meter data, and 

their effectiveness has not improved significantly compared 

to least squares methods or optimization algorithms. 

In response to the aforementioned challenges, this paper 

proposes a spatio-temporal network modeling approach that 

combines highway convolutional neural networks with 

bidirectional long short-term memory (H-CNN-BiLSTM) 

networks. First, the convolutional module is used to extract 

spatial features between the variables that a highway network 

combines to reduce information loss. Then, the extracted 

features are fed into the BiLSTM network to capture temporal 

patterns. This strategy solves the problems of nonlinearity 

and autocorrelation present in electric meter data. It enables 

online prediction of the relative error in EV charging pile 

meters and reduces the human and material resources 

required for manual on-site verification. 

The following sections of this paper are organized as 

follows: Section 2 outlines the methods for preprocessing the 

collected electric meter data and the formula for calculating 

the relative error. Section 3 explains the model's framework 

proposed in this study, accompanied by a comprehensive 

description of the online application process. Section 4 

applies the proposed model to an actual charging station and 

compares it with other existing advanced methods to 

demonstrate its practicality and superiority. Finally, Section 5 

concludes the paper with a concise summary and a look into 

the future. 

2. ELECTRIC METER DATA PREPROCESSING AND 

CALCULATION OF RELATIVE ERROR 

In the domain of field operations, the measurement devices 

used in new EV charging facilities are susceptible to a number 

of factors that lead to data gaps, anomalies, and random errors 

[20]. Therefore, data cleansing is crucial. Since the charging 

efficiency is subject to considerable fluctuations at the 

beginning and end of the charging process, which may not 

accurately reflect the current state of the smart meters, the 

data used for the calculations refer to cases where a stable 

charging state is achieved. This dataset includes parameters 

such as energy, current, voltage, and charging efficiency 

measured by each smart meter. 

As for the electric energy data, it is noteworthy that the 

smart meters measure the cumulative electricity consumption 

within their respective branches. Therefore, it is essential to 

perform a first-order difference calculation with this data. 

This procedure provides the amount of energy consumed in 

each branch during a given sampling period: 

 Δ𝑤𝑖
𝑘 = 𝑤𝑖+1

𝑘 −𝑤𝑖
𝑘  (1) 

where 𝑤𝑖
𝑘 is the value of electrical energy recorded by the 

smart meter at the 𝑖th sampling period for the 𝑘th charging pile. 

Consequently, the actual relative error of the 𝑘th smart meter 

for the 𝑖th sampling period can be calculated using the 

following formula: 

 𝜉𝑖
𝑘 = (Δ𝑤𝑖

𝑘 − Δ𝑢𝑖
𝑘)/Δ𝑢𝑖

𝑘 × 100 % (2) 

where Δ𝑢𝑖
𝑘 is the actual electrical energy consumed for the 

𝑘th charging pile during the 𝑖th sampling period, which is 

recorded by a high-accuracy electric energy metering unit 

installed at the charging gun. 
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Due to the long sampling period of smart meters used in 

the field, such as every 15 minutes, it is difficult to obtain 

precise variations of current, voltage, and charging efficiency 

between sampling points. Therefore, the average of the data 

from the previous and subsequent sampling points is used to 

represent the current, voltage, and charging efficiency for the 

current sampling period: 

 �̅�𝑖
𝑘 =

𝑥𝑖
𝑘+𝑥𝑖+1

𝑘

2
 (3) 

where 𝑥𝑖
𝑘 is the electrical parameter matrix at the 𝑖th sampling 

period for the 𝑘th smart meter, including current, voltage, and 

charging efficiency. 

In the raw data, there is variability in both the units and the 

dimensions of the different variables, which may cause an 

uneven distribution of feature weights in the neural network. 

This imbalance can lead to certain features having 

a disproportionate influence while others are underestimated, 

which significantly affects the overall performance of the 

model. To remedy this, it is important to standardize the input 

data for the model. This normalization process is instrumental 

in improving the model's convergence speed and accuracy. 

The normalization formula used is as follows: 

 𝑣𝑖 =
𝑣𝑖−𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
 (4) 

where 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 denote the minimum and maximum 

values of a variable, respectively. 

3. ELECTRIC VEHICLE CHARGING FACILITY ELECTRIC METER 

ERROR ANALYSIS MODEL 

In terms of error prediction for operating energy meters, 

the effectiveness of conventional methods is often 

unsatisfactory. Therefore, the H-CNN-BiLSTM model is 

proposed, which mainly consists of a convolutional module 

and a BiLSTM network module. The modules are used to 

extract spatial and temporal features from the raw data 

variables with the ultimate goal of increasing the prediction 

accuracy. The input to the model is the data processed  

{�̄�, 𝛥𝑤} as described in Section 2 and the output is the 

estimated relative error of the electric meter. The network 

structure is shown in Fig. 1. 

 

Fig. 1.  H-CNN-BiLSTM network structure. 

A. Convolutional module 

The data from smart meters is one-dimensional and 

contains fewer variables, which severely limits the ability of 

neural networks to extract the underlying information. 

However, convolutional neural network stacking is used to 

enrich data features, which enables in-depth exploration of 

the intervariable relationships within smart meter data [21], 

[22]. The convolutional module consists primarily of three 

one-dimensional convolutional layers. The use of multiple 

convolutional layers serves the purpose of expanding the 

feature dimensions and exploring the data to reveal 

comprehensive information, which consequently expands the 

channels of the network with minimal parameter 

involvement. 

The sigmoid function is chosen as the activation function 

for the first layer, which is expressed in the following 

formula: 

 𝑆(𝑥) =
1

1+𝑒−𝑥
 (5) 

The relu function is selected as the activation function for 

the second and third layers, as shown in the following 

formula: 

 𝑅(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (6) 

The output of the last convolutional module is combined 

with part of the original information retained by the highway 

network, as shown in Fig. 2, and this combination includes 

two gating structures. 

 

Fig. 2.  Highway network structure. 

The transformation gate is used to control the degree of 

transformation of the input signal, allowing the network to 

adaptively learn the expression of the input signal. The 

calculation method is as follows: 

 𝐻(𝑥) = 𝜎(𝑊𝑡𝑥 + 𝑏𝑡) (7) 

where 𝑥 is the input signal.  𝜎 denotes the sigmoid function. 

𝑊𝑡 and 𝑏𝑡 represent the weight matrix and the bias term of the 

input gate control function, respectively. 

The transmission gate can be regarded as a variant of 

a gated recurrent unit that controls the retention level of the 

input signal by learning gate coefficients, which are usually 

defined as follows: 

 𝐶(𝑥) = 1 − 𝑇(𝑥) (8) 

The final output is therefore given by: 

 𝐹(𝑥) = 𝐶𝑁𝑁(𝑥) ⊗ 𝐻(𝑥) + 𝑥 ⊗ 𝐶(𝑥) (9) 

where 𝐶𝑁𝑁(𝑥) represents the output of the convolutional 

module and ⊗ denotes the element-wise multiplication. 
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B. Bidirectional long short-term memory network module 

To capture temporal information comprehensively, the 

model contains a BiLSTM. In contrast to the LSTM model, 

the BiLSTM model not only considers the information of the 

current moment in sequential data, but also integrates 

information from earlier and later moments, thereby skillfully 

capturing long-term dependencies within the sequence [23]-

[25]. 

 

Fig. 3.  BiLSTM network structure. 

The BiLSTM module consists of two layers of BiLSTM 

networks, each layer comprising two LSTM units, as shown 

in Fig. 3. One of the units processes the sequence in the 

forward direction, while the other processes it in the reverse 

direction. The outputs of the two LSTM units are 

concatenated at each time step to generate the final output for 

that particular time step, and this calculation is represented by 

the following formula: 

 ℎ𝑖 = 𝐿𝑆𝑇𝑀(𝐹(𝑥), ℎ𝑖−1) (10) 

 ℎ𝑖
′ = 𝐿𝑆𝑇𝑀(𝐹(𝑥), ℎ𝑖+1

′ ) (11) 

 𝐻𝑠𝑖 = 𝑊ℎ𝑖 +𝑊′ℎ𝑖
′ + 𝑏𝑖  (12) 

where 𝐿𝑆𝑇𝑀(∙) represents the traditional LSTM computation 

process. ℎ𝑖 and ℎ𝑖
′ are the hidden state vectors of the forward 

and backward LSTM at each time step, respectively. 𝐻𝑠𝑖  is 

the hidden state vector for each time step, which contains 

bidirectional temporal information. 𝑊 and 𝑊′ are the 

forward and backward output weights of the BiLSTM, 

respectively. 𝑏𝑖 is the bias parameter. 

C. Loss function design 

In the field of neural networks, the loss function serves as 

a metric for quantifying the discrepancy between predicted 

and observed values. It represents the primary objective 

function that must be minimized throughout the training 

process of the neural network, as shown in (13). The loss 

function consists of two basic components, namely the error 

function and the regularization term. The error function 

evaluates the discrepancy between the predictions of the 

model and the actual values, while the regularization term 

penalizes the model for overfitting. 

 𝐿oss = √
1

𝑛
∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑓(𝑥𝑖))

2 +
𝜆

2
∑  𝑚
𝑖=1 𝑤𝑖

2 (13) 

where 𝑛, 𝑦𝑖 , and 𝑓(𝑥𝑖) represent the number of samples, the 
actual values, and the prediction values, respectively. 𝑚 is the 

number of weights in the model. 𝑤𝑖  represents the 

determinant of the 𝑖th weight and 𝜆 is a hyperparameter used 
to control the weight of the regularization. 

D. Model training and online monitoring process 

The application process of the error analysis model for EV 
charger meters based on H-CNN-BiLSTM is shown in Fig. 4 
and comprises three components: data preprocessing, offline 
training, and online prediction. The detailed process is as 
follows: 

1. Data preprocessing: According to the overview in 
Section 2, the collected raw data is preprocessed. The 
actual relative error of the electric meter is calculated 
based on the data from the high-accuracy electric 
energy metering unit, which serves as the target for the 
model. 

2. Offline training: Starting with the initialization of the 
network hyperparameters, the preprocessed data is used 
as input for the model. The loss function is then 
calculated by comparing the model output with the 
target value according to (13). The network parameters 
are then updated using the adaptive moment estimation 
(Adam) optimization method. The training process 
ends either when a certain number of iterations is 
reached or when the loss falls below a predefines 
threshold. 

3. Online prediction: Online prediction does not require 
the installation of additional electric energy metering 
units. The collected data is preprocessed and fed 
directly into the trained model to obtain the estimated 
relative error of the electric meter. If the error exceeds 
the national standard, an on-site inspection is carried 
out to determine whether the electric meter needs to be 
replaced. However, if the error is within acceptable 
limits, continuous monitoring is carried out. The aim is 
to reduce the frequency of on-site inspections and thus 
minimize the associated costs for personnel and 
materials. 

 

Fig. 4.  Flowchart for error estimation in EV charging pile meters. 
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4. CASE STUDY 

A. Data collection 

The proposed model primarily focuses on the error analysis 

for direct current (DC) charging piles. In order to prove the 

effectiveness of the proposed method, the data to calculate the 

relative errors of charging piles is used, which is obtained 

from DC charging piles at a bus charging station in China. 

The topological configuration is shown in Fig. 5. Each box-

type substation is equipped with a high-accuracy alternating 

current (AC) electric meter (called master meter), which is 

responsible for recording the electrical parameters of the grid 

under the substation. The parameters include charging 

efficiency, electric energy, and power. Each charging pile is 

equipped with a DC electric meter (sub-meter) with an 

accuracy class of 2.0. The sub-meters are installed on the 

output side of the charging piles to measure the energy 

supplied to the EV. They record data on voltage, current, 

electric energy, and power. Both the master meters and the 

sub-meters have a sampling interval of 15 minutes and are 

equipped with communication modules that transmit the data 

to the information collection platform via GPRS/4G. The 

evaluation focuses on whether the relative error between the 

electric energy recorded by the sub-meter at the charging pile 

and the actual energy consumption meets the prescribed 

accuracy requirements. After preprocessing, a data set of 

1550 samples remains. In order to evaluate the effectiveness 

and practicality of the proposed model, the high-accuracy 

reference meters were installed in parallel with the charging 

pile's output-side meter to obtain the actual energy 

consumption data. The first 1300 samples are assigned to the 

training set, and the following 350 samples are referred to as 

the test set. 

 

Fig. 5.  Topological structure of an electric EV station. 

B. Evaluation metrics 

Root mean square error (RMSE), mean absolute error 

(MAE), and coefficient of determination ( ²) were selected 

as metrics for model performance evaluation to demonstrate 

the accuracy of model predictions, defined as follows: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑓(𝑥𝑖))

2 (14) 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑓(𝑥𝑖)|
𝑛
𝑖=1    (15) 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑓(𝑥𝑖))

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑀𝑒𝑎𝑛(𝑦))2𝑛
𝑖=1

   (16) 

where 𝑛 represents the number of samples. 𝑦𝑖  denotes the 

actual values. 𝑓(𝑥𝑖) stands for the predicted values, and 

𝑀𝑒𝑎𝑛(𝑦) is the mean value of the target variable. 

C. Experimental results and comparative analysis 

The hyperparameters of the H-CNN-BiLSTM model are 

specified in Table 1. The model parameters are updated by 

using the Adam method during the BP process. As shown in 

Fig. 6, the training process of the proposed model shows that 

the loss function has reached stability, which means that the 

model has reached its optimal predictive performance. 

Table 1.  Hyperparameters of H-CNN-BiLSTM. 

Training options Parameters 

Optimizer Adam 

Mini batch size 200 

Max epochs 50 

Initial learn rate 0.002 

Learn rate drop factor 0.1 

Learn rate drop period 100 

 

Fig. 6.  Model training on the training set. 

To demonstrate the superiority of the proposed method, it 

is compared with the limited memory damped recursive least 

squares with extended Kalman filter (EKF-LMRLS) method, 

the BP neural network for particle swarm optimization (PSO-

BPNN) method, and the generalized damped recursive least 

squares (GDRLS) method. As shown in Fig. 7, the prediction 

results demonstrate the superior fitting performance of the 

proposed method in accurately estimating the fluctuation of 

the relative errors in the energy meter. In contrast, the PSO-

BPNN  method  neglects  the autocorrelation characteristic  of  

Box type

substation 1

GP S 4G

Box type

substation  

Information collection platform

Charger Sub-meter
 eference

meterMaster

GP S 4G



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 1, 40-47 

45 

 

(a) H-CNN-BiLSTM 

 

(b) PSO-BP 

 

(c) EKF-LMRLS 

 

(d) GDRLS 

Fig. 7.  Prediction results of different models on the test set. 

the electric meter data, resulting in inferior estimation 

performance. On the other hand, both the EKF-LMRLS and 

GDRLS methods can only predict the general trend of the 

relative error. Another problem is that the estimated values of 

GDRLS show significant deviations from the actual values. 

To illustrate the predictive capabilities of the proposed 

model and the comparison models, Table 2 also contains 

specific model evaluation indices. It is obvious that the 

prediction accuracy of the model in this paper is the highest. 

Compared to PSO-BPNN, the RMSE index shows 

a significant improvement of 130 %. Compared to EKF-

LMRLS, the improvement increases to 470 %, and compared 

to GDRLS, the improvement reaches 410 %. The 

experimental results show that the method, which considers 

both the spatial and temporal dimensions, can significantly 

improve the prediction of relative errors. In addition, 

a residual boxplot for the H-CNN-BiLSTM model and the 

comparison models is shown in Fig. 8. It can be seen that the 

PSO-BPNN method has a larger number of outliers, while the 

EKF-LMRLS and GDRLS models produce larger boxes. In 

contrast, the model proposed in this paper has fewer outliers 

and a smaller box, indicating the stability and accuracy of its 

predictions. 

Table 2.  Comparison of the performance evaluation indices of the 

four models. 

Model R2 MAE RMSE 

H-CNN-BiLSTM 0.9771 0.1748 0.2093 

PSO-BPNN 0.6325 0.3626 0.4635 

EKF-LMRLS 0.3934 0.9417 1.1412 

GDRLS 0.2024 0.5850 1.0166 

 

Fig. 8.  Residual box plot of different models. 

5. CONCLUSION 

In response to the inherent limitations of conventional 

methods in online predictions of the relative error of electric 

meters, the H-CNN-BiLSTM model is proposed to analyze 

the relative error of electric meters in EV charging facilities. 

First, the proposed method utilizes a convolutional module 

with a highway network to extract spatial features between 

the meter data while preserving the essential original 

information. The extracted features are then used as input to 

a BiLSTM network to learn the change trend of the relative 

error of the electric meters. Ultimately, the effectiveness of 

this method is confirmed by its application to a dataset 
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obtained from an EV charging station in a specific region. In 

contrast to the existing PSO-BPNN, EKF-LMRLS, and 

GDRLS models, this method provides significantly more 

accurate prediction results, which can reduce the cost of 

manpower and materials required for manual on-site 

verification. 

It should be noted that this article is primarily concerned 

with the influence of the operating condition of DC charging 

piles on the measurement performance of electric meters and 

does not include considerations related to AC charging piles 

or external environmental factors. In future work, the 

research team intends to combine this model with transfer 

learning techniques to improve its applicability and 

generalizability in practical scenarios. 
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