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Abstract. The electrophysiology problem posses a big challenge, not only because of the 
structural complexities inherent to the heart tissue, but also because of the complex electric 
behaviour of the cardiac cells. Solving the electric activity of the heart requires an enormous 
effort of data integration for generating a suitable model for simulation. The resulting model 
will be of multi-scale nature (ranging from the microscopic ionic channels to the surface 
ECG). The multi-scale nature of the electrophysiology problem makes difficult its numerical 
solution, requiring temporal and spatial resolutions of 0.1ms and 0.2mm respectively for 
accurate simulations, leading to models with millions degrees of freedom that need to be 
solved for thousand time steps. Solution of this problem requires the use of algorithms with 
higher level of parallelism in multi-core platforms. In this regard the newer programmable 
graphic processing units (GPU) has become a highly parallel, multithreaded, many-core 
processor with tremendous computational horsepower. This paper presents results obtained 
with a novel electrophysiology simulation software entirely developed in CUDA. The software 
implements fully explicit and semi-implicit solvers for the monodomain model, using operator 
splitting. Performance is compared against classical multi-core MPI based solvers operating 
on dedicated high-performance computer clusters. Results obtained with the GPU based 
solver show enormous potential for this technology not only for research but also for clinical 
application due to its efficiency and lower hardware cost. The versatility of in-silico 
simulations is demonstrated on simulating the electric activity on realist models of the human 
heart. 
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1. Introduction 
Over the last years, mathematical modelling and computer simulations have become a useful 
tool in analysing electrophysiological phenomena. In this particular, one of the major 
contributions of computer electrophysiology has been in understanding important relations 
between electrophysiological parameters [1]. In addition, continuous advances on medical 
imaging techniques have allowed for the development of computational anatomically realistic 
models of the heart. These anatomically realistic models can then be integrated to multi-scale 
biophysical model of the heart electrophysiology to obtain reliable quantitative mechanistic 
models. However, despite the great increase in computer power, execution times remain still 
prohibitive for these computer models [2].   

The multi-scale nature of the electrophysiology problem (time constants for the different 
kinetics ranging from 0.1 to 500ms) makes difficult its numerical solution, requiring temporal 
and spatial resolutions of 0.1ms and 0.2mm respectively for accurate simulations, leading to 
models with millions degrees of freedom that need to be solved for thousand time steps.  
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Solution of this problem requires the use of algorithms with higher level of parallelism in 
multi-core platforms. In this regard, the next generation of high-performance computing 
(HPC) platforms promise to deliver better performance in the PetaFLOPS range. However, 
achieving high performance on this platforms relies on the fact that strong scalability can be 
achieved, something challenging due to the performance deterioration caused by the 
increasing communication cost between processors as the number of cores, n, increases. That 
is, with increasing n, the load assigned to each processor decreases, but the communication 
between different processors associated with the boundaries of a given partitioned domain 
increases. Therefore, when communication costs domain, no further benefits are obtained 
from adding additional processors. An alternative to the multi-core platforms is emerging in 
the newer programmable graphic processing units (GPU) which in recent years has become a 
highly parallel, multithreaded, many-core processor with tremendous computational 
horsepower. GPUs outperform multi-core CPUs architectures in terms of memory band 
width, but underperforms in terms of double precision floating point arithmetic. However, 
GPUs are built to schedule a large number of threads, thus, reducing latencies in their multi-
core architecture.   

This paper presents results obtained using a novel electrophysiology simulation software 
entirely developed in CUDA. The software implements implicit and explicit solvers for the 
monodomain model, using operator splitting and the Finite Element Method (FEM). 
Performance results are compared with a multi-CPU based software [3]. 

2. Methods 
The electric activity of the heart can be described by means of the well established 
monodomain equation [4] સ ∙ ሺ۲સܸሻ = ௠ܥ డ௏డ௧ + ,௜௢௡ሺܸܬ ሻܝ + ௗ௧ܝ௦௧௠    (1) డܬ = ,ܝሺ܎ ܸ,  ሻ      (2)ݐ

where V is the transmembrane potential, D is the second order anisotropic conductivity tensor, Cm the membrane capacitance, Jstm the stimulus current, Jion the ionic current, and u is a set of 
state variables associated with the ionic model. The set of equations (1) is subject to the zero 
flux boundary conditions ܖ ∙ ሺ۲સVሻ = 0      (3) 
where n is the outward pointing unit normal to the computational domain. The monodomain 
model represents an important simplification of the bidomain model with important 
advantages for mathematical analysis and computation. Despite its simplicity, this model is 
adequate for studying a number of electrophysiologic problems as ventricular fibrillation or 
the onset of ischemia in the electric behaviour of the heart [1,5-6]. 

An efficient form for solving Eq. (1-3) is by applying the Strang based operator-splitting 
scheme in combination with a generalized trapezoidal family of method for time integrations 
[7,8], in conjunction with the finite element method for the spatial discretization. The basic 
algorithm can be summarized the following two steps: 

Step 1: Using V(t) as initial condition to integrate ܥ௠ డ௏డ௧ = ,௜௢௡ሺܸܬ− ሻܝ − ௗ௧ܝ௦௧௠డܬ = ,ܝሺ܎ ܸ, ሻݐ  for ݐ ∈ ሾݐ, ݐ +  ሿ   (4)ݐ∆

Step 2: Using the result in Step 1 to integrate 
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௠ܥ డ௏డ௧ = સ ∙ ሺ۲સܸሻ for ݐ ∈ ሾݐ, ݐ +  ሿ   (5)ݐ∆

When performing Step 2, the computational domain must be discretized in space by a mesh, 
e.g. finite elements, to approximate the dependent variables of the problem, V  and u. Hence, 
after the spatial discretization, the system of partial differential equations (5) can be written in 
matrix notation as ܄ۻሶ + ܄۹ = ૙      (6) 

where M  is the mass matrix associated with ܥ௠߲ܸ/߲ݐ;  and K  is the stiffness matrix 
associated with સ ∙ ሺ۲સܸሻ. These matrices are obtained by assembling individual element 
matrices. Equation 7 is called a semi-discrete equation because time is left continuous. 

The most well-known algorithms for integrating (6) in time are members of the generalized 
trapezoidal family of methods [8]. Let Vk  and ܄ሶ  denote vectors of the transmembrane ࢑
potential and its time derivative at each nodal point of the discretized domain (mesh) at time tk, where k  is index of the time step, then at time tk+1  we can write ܄ۻሶ ା૚࢑ + ା૚࢑܄۹ = ૙      (7) ࢑ࢂା૚ = ࢑܄ + ሶࢂݐ∆ ሶࢂ (8)      ࣂା࢑ ࣂା࢑ = ሺ1 − ሶ܄ሻߠ ࢑ + ሶࢂߠ  ା૚      (9)࢑

where ߠ ∈ ሾ0,1ሿ is a scalar parameter. When using the operator-splitting, Eq. 1-3 are solved in 
two steps. First, the electrophysiological model, Eq. 4 ࢂ∗ = ௞ࢂ + ,௞ࢂ௜௢௡ሺܬሺݐ∆ ሻ࢛ +  ௦௧௠ሻ     (10)ܬ

is solved at each mesh point to obtain an intermediate transmembrane potential vector V* 
(Step 1). With this result at hand, using Eq. 8-9 to eliminate ܄ሶ   ା૚ from Eq.7࢑
and ܄ۻሶ ࢑ =  from the previous converged time increment, the transmembrane potential ࢑܄۹−
at time step k+1 (Step 2) is obtained as ࢑܄ۻశ૚ି࢚∆∗܄ = −۹ሾ܄ߠ௞ାଵ + ሺ1 −  ௞ሿ,   (11)܄ሻߠ

or alternatively ۹෡܄௞ାଵ = መ܊      (12) 

where ۹෡  is everything that multiplies onto ܄௞ାଵ, and ܊መ  contains the other terms in Eq. 11. 

Hence, the basic algorithm at time tk+1 can be summarized, as: 

Step I:  Use Vk as initial condition to integrate Eq. 10 to obtain V* 
Step II:  Use the result obtained in Step I, V*, to solve Eq. 11 for Vk+1 
For different values of the parameter , different time integration schemes are obtained for 
integrating the discretized homogeneous parabolic equation, Eq. 5: 

 =0  Forward Euler (conditionally stable) 
 =1/2  Crank-Nicholson (unconditionally stable) 
 =2/3  Galerkin Scheme (unconditionally stable) 
 =1  Backward Euler (unconditionally stable) 
 
Step I of the algorithm uses values of the Vk at each mesh point to integrate the system of 
ODEs (Eq. 3) corresponding to the ionic model. This step can be performed using either 
implicit or explicit methods. However, the use of implicit methods requires the solution of a 
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nonlinear system of equations at each node for each time step largely increasing the 
computational cost. On the contrary, explicit integration, even though computationally 
cheaper, imposes more stringent conditions on the size of the time step in order to avoid 
numerical instabilities. 

Parallel implementation in GPU 
In the discretized scheme, there are two main contributors to the computational cost: solving 
the system of ODEs at each mesh point, and solving the linear system of equations associated 
with the parabolic PDE. In order to maximize performance, all vectors and matrices 
associated with the system of equations reside on the GPU memory with the solution 
transferred back to the host only when the data has to be saved on disk. In addition, in order to 
minimize memory storage, all data is stored using sparse matrix structures. 

Ionic solver in GPU: The C/C++ code of the tenTusscher and Panfilov ionic model (TP06) 
[9] was downloaded from the CellML model repository [10], modified by implementing the 
Rush-Larsen integration scheme for the gating variables [11], and then compiled for GPU. 
The exact same code was executed in CPU and GPU in order to validate the implementation. 
In addition, results were compared with the original code provided by tenTusscher and 
Panfilov. During execution, the vector of state variables, u, and the current transmembrane 
potential, Vk, remain in the GPU memory and use to compute V* in Eq. 10. Adaptive time 
integration was not incorporated in the GPU implementation in order to reduce latency. 

PDE solver in GPU: The linear system given in Eq. 12 was solved on GPUs using the CUSP 
and Thrust libraries [12] developed by Nvidia. CUSP is implemented for a single GPU and 
natively supports a number of sparse matrix formats providing specific subroutines for an 
easy passage between different sparse matrix formats. The library includes highly optimized 
matrix-vector multiplication algorithms and iterative solvers. In addition, a variety of 
preconditioners based on algebraic multigrid (AMG) and approximate inverse operators are 
ready available in the library. In our implementation, mass and stiffness matrices, M and K 
respectively, are assembled in parallel in the GPU and stored in compressed sparse row (CSR) 
format. These matrices are then transformed to an efficient sparse matrix format when 
transferred in the GPU memory for computations. 

Benchmarking 
Benchmarking was conducted for 1D, 2D and 3D problems. The model geometry was defined 
as a cable of length L, a rectangle with dimensions LL, and a cuboid with dimensions of L720 mm3. The dimension L was varied in order to achieve a given number of degrees of 
freedom in the problem. The different geometries where meshed with linear, quadrilateral and 
hexahedral elements of size 0.1 mm, 0.10.1 mm2 and 0.10.10.1 mm3 respectively. For 
2D and 3D problems, triangular and tetrahedral elements were also used to characterize the 
performance under a variable matrix bandwidth. In addition, since ventricular cardiac muscle 
is anisotropic, the tissue was modelled as transversally isotropic with the fibre direction 
oriented along the x-axis. For the benchmarking, cellular action potential was modelled using 
the TP06 model, which comprises 19 state variables. A propagating wave front was initiated 
at one of the corners of the model using a stimulation current pulse, Jstm, of 50 μA/cm2 
strength and 2 ms duration. The electrical activity was simulated over 100 ms, with a fixed 
time-step of 20 s. The parallel performance was evaluated as the speedup, S, i.e., the 
execution time of the GPU implementation with respect to a single CPU core. 

The efficiency of the GPU is further demonstrated on the simulation of a heart beat in a 
human heart and a human atria. A voxelized human heart with 1289000 elements and 
1434129 nodes (DOF) has been considered. Figure 1a shows the voxel mesh (voxel size of 
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0.40.40.4 mm3 ) along with the fiber orientation of the ventricular tissue. The TP06 model 
has been used to simulated the action potential model of the ventricular tissue. The efficiency 
of the code on non-structured meshes was demonstrated on a model of the human atria with 
1378054 elements and 266450 nodes (see Figure 1b). The atrial action potential model 
proposed by Maleckar et al [13] was used for simulationg the electric activity of atrial tissue. 

(a) (b) 

Fig. 1. Three dimensional finite element models. a) Hexahedral mesh of a biventricular human heart depicting 
the fibre orientation; b) Tetrahedral mesh of a human atria.  

GPU simulations were run on a computer node with two Intel-Xeon Quad-Core CPUs E5620 
clocked at 2.4GHz and 48GB DDR3 RAM. The node is equipped with four Nvidia Tesla 
M2090 GPUs, each with 6GB DDR5 RAM for a total of 24GB DDR5 RAM. All simulations 
were run in a single GPU. The single CPU benchmark was run on a single core of a cluster 
with 8 nodes with two Intel-Xeon Quad-Core E5520 clocked at 2.26GHz and 24GB DDR3 
RAM connected by a high speed infiniband network. 

3. Results 
When solving the monodomain model, there are two critical steps in term of computation 
time: i) integration of the action potential model (Step I) and ii) the solution of the linear 
system of equations for the propagation of the electric signal (Step II). The operating splitting 
algorithm allows for an independent evaluation of the performance on these two steps.  

Figure 2 shows the speed-up, S, obtained with the GPU in simulating 1 s of cellular activity 
(Step I) as the number of nodes in the model increases from 1 up to 6 million. The figure 
shows that core-to-core the GPU is much inferior to a single CPU, with a single CPU thread 
outperforming a single GPU thread about 480 times. However, the enormous computational 
horsepower of the GPU leads the GPU to overtake a single CPU as the number of nodes 
increases as shown in Figure 2a. This figure shows that the speedup increases linearly until 
reaching an asymptotic speedup of 180× for a model with more than a one million nodes.  



Electrocardiology 2014 - Proceedings of the 41st International Congress on Electrocardiology 

100 

(a) (b) 

Fig. 2. Results for the integration of the ionic model for a 1s of cell activity. a) Speedup curve; b) Relative 
computing time for the GPU.  

Regarding the relative computing time, Figure 2b shows that the C2090 GPU is able to 
evaluate the cell electrophysiology model in 8000 nodes simultaneously with almost no 
degradation in the computing time (see Figure 1b). However, for models with more than one 
million nodes, the computing time increases almost linearly. 

The speedup, S, for the monodomain model is shown in Figure 3 for fully explicit (and 
semi-implicit schemes (1for the one-, two-, and three- dimensional problems.  

(a) (b) 

Fig. 3. Speedup curve for the solution of the monodomain model with constant time step for one-, two, and 
three-dimensional problems. a) Fully explicit scheme (; b) Semi-implicit scheme (1.  

 
Figure 3a shows the results for the fully explicit scheme. The same trend as in Figure 2a for 
the integration of the ionic model can be observed. As for the case of the integration of the 
ionic model, for small problems the GPU underperforms the single CPU execution due to the 
lower clock-speed of the single GPU with respect to the single CPU. However, as the number 
of degrees of freedom increases (the threshold was found close to 800 nodes) the GPU 
outperforms the CPU until reaching an asymptotic behaviour with a speedup of: 100× for 1d-
problems, 90× for the 2d-problem, and 70× for the 3d-problem. The reduction in acceleration 
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is due to the additional cost implied by the matrix multiplication that takes place in Step II. 
For the semi-implicit scheme a similar trend as for the fully explicit scheme is observed. 
However, for the semi-implicit scheme the GPU does not reaches a saturation point due to the 
higher computational cost required for solving the system of equations (Eq. 12) on each time 
step. This increased computational cost is also noted by the reduction in the speed-up (65× for 
1d-problem, 60× for 2d-problems, and 50× for 3d-problems), and the increased threshold up 
to approximately 8000 nodes as the minimum problem size for which the GPU starts to 
overtake the CPU. 

(a) 
 

(b) 

Fig. 4. Depolarization fronts at 20 ms after stimulation. a) Biventricular human heart; b) Human atria. 

Figure 4 shows the depolarization front for the biventricular human heart and the human atria 
after 20 ms of stimulation. The speed-up obtained in these cases was 50× for the human heart 
and 40× for the human atria with respect to a single CPU core. In addition, the GPU still 
performed 1.8× faster than 42 cores of the cluster described in the Methods section, 
demonstrating the enormous potentiality of this technology. 

4. Discussion 
The potential of GPU implementation for solving the monodomain equations of cardiac 
electrophysiology has been investigated. Scalability tests were performed for fully explicit 
and semi-implicit numeric schemes in 1d-, 2d-, and 3d-model problems with structured and 
unstructured meshes using novel software entirely developed in C++/CUDA. The 
performance of the method was ulteriorly demonstrated on realistic models of a biventricular 
human heart and human atria. 

Previous studies [14] have reported speedups of 32× for the monodomain model using an 
explicit finite difference scheme along with the phase I Luo-Rudy ionic model [15], a much 
less complex model as the TP06 model used in this study (7 state variables instead the 19 
state variables of the TP06 or the 28 state variables of the Maleckar et al. action potential 
model of atria). In their study Sato et al [14] have established the solution of the PDE 
equation as the bottle neck of the computation with GPU, in part because they were forced to 
used single precision for their computations requiring a more stringent step size when solving 
the Step II of the algorithm than the required for integrating the action potential model (Step 
I). In addition, Sato et al. were using an adaptive time stepping when integrating the system of 
ODEs, which introduces latencies in the computations. In our implementation, we integrate 
with a constant time step size that guarantees both, the stability of the ionic model (most 
restrictive step size) and the stability of the PDE, similarly as has been proposed in order 
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studies [2]. With this strategy we have been able to make full use of the GPU parallel 
potential by reducing latency during GPU execution leading to acceleration of up to 90× for 
2d-problems similar to those considered in [14] with an explicit scheme.  

Results from Figure 3 also indicate that a minimum problem size is required in order to 
maximize GPU performance. This is due to the slower clock speed of the GPU cores and 
limited double precision floating point arithmetic as compare to CPU cores. This lower core 
performance is, however, compensated by the capability of the GPU to schedule a vast 
numbers of threads and efficiently reducing latency in this many core architecture. In this 
regard, for the C2090 our results indicate that for the ODE solver, the GPU is able to 
accommodate up to 8000 nodes without degradation of computer performance. For the 
monodomain solver, this threshold was found to be in 800 nodes for the fully explicit scheme 
and in 8000 nodes for the semi-implicit scheme. After this threshold is surpassed the 
scalability of the GPU with the number of degrees of freedom approaches to linearity. Even 
though these results are dependent on the GPU card used, this threshold appeared to be 
independent of the problem dimensionality for the cases considered. We must remark that the 
bandwidth of the linear system did not change much between the structured and unstructured 
meshes, being 27 for the 3d-structured mesh and 31 for the 3d-unstructured mesh. This 
explains the similarity between the results obtained for both benchmarks, as well as the 
speedup found for the ventricle and atria simulations. 

Another aspect worth mentioned from our studies was the influence of the sparse matrix 
format for storing the finite element matrices. In this regard, using the efficient Hybrid sparse 
matrix format offered in the CUSP-library [12] can reduce the computation time for 3-d 
problems up to a 10%. 

5. Conclusions 
This study demonstrates that significant reduction on computing time can be achieved for 
solving the cardiac monodomain equations. Despite the significant lower performance 
observed on a single GPU core with respect to a single CPU core, a single GPU card offered 
excellent performance with speedups of 70× for three-dimensional problems solved explicitly 
and near 50× for three-dimensional problems solved with a semi-implicit scheme when 
compared with a single CPU. These results demonstrate that personal workstation is able to 
perform a simulation of the electric activity of a whole heart in reasonable times that enable 
researchers to interact more easily with their simulations. 

Working with GPUs poses additional programming challenges over traditional parallel CPU 
implementations. However, like parallel CPU implementations, an efficient management of 
threads and memory are required if maximum performance of the GPU is to be achieved. 
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