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Abstract. The exact critical points for selected sample sizes and significance levels are 
tabulated for the two-sample test statistic which is a combination of the Wilcoxon and the 
Mood test statistic. This statistic serves for testing the null hypothesis that two sampled  
populations have the same location and scale parameters. 
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1. Introduction 

Suppose that the random variables X= σX ε + μX, Y= σY ε + μY, where the real numbers μX, μY 
denote the location parameters, σX >0, σY >0 are scale parameters and the random variable ε 
has a distribution function continuous on the real line. Assume that X1 ,…, Xm is a random 
sample from the distribution of X,  Y1 ,…, Yn  is a random sample from the distribution of Y   
and these random samples are independent. Let (R1, ... ,RN) , N=m+n, denote the ranks of the 
pooled sample X1 ,…, Xm, Y1 ,…, Yn .The null hypothesis  

                                             H0:    μX  = μY  ,      σX  = σY                                              (1) 

is sometimes called also the location-scale hypothesis. In practice the change in the location is 
often accompanied by the change in scale, and in such a case the statistics constructed for 
testing the location-scale null hypothesis (1) usually yield better results than the statistics 
constructed especially for the one type change of location or constructed especially for the 
one type change of scale. Readers interested in further discussion of the need of testing this 
hypothesis can found further arguments in Section 1 of [6] or in [3].  

The null hypothesis (1) is against the alternative H1 that at least one of the equalities (1) does 
not hold, tested usually by means of the Lepage test from [4]. This test is included also into 
the monograph [2]. The Lepage test statistic is given by the formula 
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)( is the Ansari-
Bradley rank tests statistic (i.e., the vector of scores aN=(1,2,...,k,k,…,2,1) if N=2k and 
aN=(1,2,...,k,k+1,k,…,2,1) if N=2k+1). An analogous statistic has been formulated in the 
multisample setting in [7], another test statistics has been for this problem studied in [8], 
where also their non-centrality parameters for testing the null location-scale hypothesis are for 
some situations computed. The statistics in [8] are defined in the general multisample setting, 
but they can be used also in the two-sample setting, when the tables of the critical constants 
can be computed. However, for testing the location-scale hypothesis the only available tables 
of critical constants are those published in [5].  
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2. Basic Formulas 

The topic of the paper is the computation of the critical values for the two-sample test statistic 
(3). In accordance with [8] label the combination of the Wilcoxon and the Mood statistic by 
TSQ. Thus in the notation from the previous section 

                              TSQ  =  TK + Q ,                                                                                         (3) 
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Since according to the assumptions the distribution function of ε is continuous, the statistic 
TSQ is distribution-free whenever the null hypothesis (1) holds. The null hypothesis (1) is 
rejected whenever TSQ ≥  wα. Values of  wα = wα (m,n) can be found from the  table presented 
in the next section,  for the sample sizes not included into the table instead of wα use the (1-
α)th quantile of the chi-square distribution with 2 degrees of freedom.  

      In the computation of the tables of this paper the following lemma is  useful. 

      Lemma 1.  Let J(m,n) denote the set of all m-tuples (i1, … ,im) consisting of integers such 
that 1  i≤ 1 < … < im  ≤  m+n. Suppose that  
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and B(m,n,k1,k2)  denotes the number of elements of  D(m,n,k1,k2). 

        (I)  Let s >1. If at least one of the inequalities  k1 ≤  (r+s) ,  k2  ≤  (r+s)2 holds, then  
B(s,r,k1,k2)=   =B(s,r-1,k1,k2). 

       (II) If  k1> (s+r) ,  k2 > (s + r)2,  then  

                     B(s,r,k1,k2)  =  B(s,r-1,k1,k2)  +  B( s-1, r, k1 - (r+s) , k2 - (r+s)2 ) . 

If R=(R1, … ,RN) is a random vector which is uniformly distributed over the set of all 
permutations of the set {1, … ,N},  then according to Theorem 1 on p. 167 of  [1] for any set 
A ⊂  {1, … ,N } consisting of  m distinct integers  

                                   P(  {R1,  … ,Rm }=A  ) =   1 ⎟⎟
⎠

⎞
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Combining this equality with Lemma 1 one can construct a program for computation of 
critical values of the statistic (3). 

3. Tables of Critical Values 

In this section we present the table 1 of the exact critical values of the statistic (3). First we 
describe the output of the table.  
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     Since the set V=V(m,n) of possible values of the statistic TSQ is finite for every sample 
sizes m, n, in general one cannot find exact critical values for arbitrary prescribed probability 
α of the type I error. In the following table the number on the intersection of the column for 
w  with the row for significance level α denote the quantity w  = min{ t∈V;  P( TSQ  t)  α 
}, the entry corresponding to α and 

≥ ≥

w  is the quantity  w  =  max{t ∈  V;  P(TSQ   t) >  α }. 
Further, for given  α,  denote  

≥
p  =  P( TSQ   ≥ w  ) ,     p =  P( TSQ   ≥ w  ) the corresponding 

probabilities of the type I error. Thus p is the largest available significance level not 

exceeding α and p  is the smallest available significance level greater than  α  The value of 
critical constant yielding the significance level closer to the nominal level α is printed in 
boldface letter. If the difference in computed values exceeds the number of decimal places 
used to describe the result of computation,  then the  boldface symbol is used for the value 
corresponding to p .  For the space reasons only several combinations of sample sizes are 
given in the following table, a more detailed table will be presented in another paper. 

Table 1 : Critical values of the test statistic TSQ  from (3). 

Α 
w     p   w   p   w   p  w  p  w   p   w  p  

  m=3 n=6   m=3 n=7   m=3 n=8  

0.200 3.5520 .179 3.2796 .202 3.1298 .200 3.0519 .217 3.3803 .176 3.2435 .212 

0.100 4.2077 .083 3.6121 .107 4.2532 .100 4.0454 .117 4.1880 .091 4.0213 .103
0.050 6.3272 .048 4.7342 .071 5.5000 .050 4.2980 .067 6.2435 .036 4.9359 .061
0.020   6.4519 .024 7.3181 .017 7.0000 .033 8.1367 .012 7.5897 .024
0.010   6.4519 .024 7.3181 .017   8.1367 .012
0.005   6.4519 .024   7.3181 .017   8.1367 .012 
  m=6 n=10   m=6 n=ll   m=6 n=12  

0.200 3.3170 .200 3.3086 .201 3.2812 .200 3.2748 .202 3.2998 .200 3.2998 .200
0.100 4.4683 .100 4.4487 .101 4.4572 .100 4.4550 .100 4.4561 .100 4.4473 .100
0.050 5.4700 .049 5.4683 .050 5.4694 .050 5.4630 .051 5.5087 .050 5.5065 .050
0.020 6.8313 .020 6.8016 .020 6.8474 .020 6.8410 .020 6.8837 .020 6.8771 .020
0.010 7.7563 .010 7.6605 .010 7.8872 .010 7.8745 .010 7.9539 .010 7.9100 .010
0.005 8.5019 .0049 8.4733 .0054 8.9718 .0048 8.8718 .0050 9.0235 .005 8.9183 .0051 
  m=7 n=7   m=7 n=8   m=7 n=9  

0.200 3.3020 .200 3.2857 .203 3.3223 .200 3.3189 .200 3.3445 .198 3.3328 .200 

0.100 4.4653 .100 4.4500 .101 4.4931 .100 4.4921 .100 4.5012 .100 4.4756 .100
0.050 5.5602 .049 5.5551 .050 5.5029 .050 5.5029 .050 5.5694 .050 5.5480 .050
0.020 6.7183 .020 6.6163 .021 6.7162 .020 6.6980 .020 6.7635 .020 6.7581 .020
0.010 7.2500 .010 7.0499 .011 7.4921 .010 7.4686 .010 7.5478 .010 7.5424 .010
0.005 8.0500 .0047 7.8622 .0058 8.0855 .0048 7.9873 .0051 8.4740 .004 8.4441 .0051 
  m=7 n=10   m=7 n=11   m=7 n=12  

0.200 3.3223 .199 3.2982 .201 3.2836 .200 3.2831 .200 3.2905 .200 3.2871 .201 

0.100 4.5132 .100 4.4972 .100 4.5140 .100 4.5140 .100 4.4804 .100 4.4789 .101
0.050 5.5739 .050 5.5719 .050 5.5428 .050 5.5428 .050 5.6012 .050 5.6000 .050
0.020 6.8912 .020 6.8711 .020 6.8373 .020 6.8373 .020 6.9289 .020 6.9159 .020
0.010 7.7453 .010 7.7052 .010 7.7821 .010 7.7805 .010 7.9493 .010 7.9373 .010
0.005 8.5894 .0050 8.5714 .0051 8.7792 .0050 8.7648 .0050 8.9306 .005 8.9087 .0050 

4. Some Simulation Results 

The aim of the following simulation is to obtain a picture of the power of tests based on the 
statistics (2) and (3) for small sample sizes covered by the Table 1. To consider power of the 
concerned tests in the case of distributions with various tail behavior, the sampling from 

34 



MEASUREMENT 2009, Proceedings of the 7th International Conference, Smolenice, Slovakia 

normal, logistic and Cauchy distribution is employed, in each case µX = 0, σX = 1. The 
simulations are based in each case on 10000 trials. The critical constants wα of the statistic 
TSQ defined in (3) are taken from the previous table, the critical constants tα of the statistic (2) 
are those computed in [5]. The power better of the two considered cases is emphasized by the 
boldface type. 

                                        Table 2: Simulation estimates of the power. 

   m = 3, n = 7   
 µY = 1.5, σY = 3 µY = 3.5, σY = 4 µY = 7, σY = 5 

 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 

P(TSQ ≥ wα|Normal) 0.057 0.07 0.202 0.224 0.533 0.547
P(T ≥ tα|Normal) 0.032 0.14 0.136 0.251 0.435 0.539
P(TSQ≥ wα|Logistic) 0.032 0.04 0.073 0.086 0.191 0.208
P(T ≥ tα|Logistic) 0.017 0.13 0.047 0.170 0.137 0.247
P(TSQ > wa|Cauchy) 0.041 0.06 0.084 0.104 0.174 0.197
P(T > ta|Cauchy) 0.025 0.114 0.060 0.165 0.138 0.233

   m = 7, n = 8   

 µY = 1.5, σY = 3 µY = 3.5, σY = 4 µ2 = 7, σ2 = 5 
 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 

P(TSQ ≥ wα|Normal) 0.448 0.640 0.745 0.886 0.950 0.987
P(T ≥ tα|Normal) 0.415 0.61 0.730 0.868 0.952 0.984
P(TSQ≥ wα|Logistic) 0.363 0.540 0.586 0.765 0.796 0.915
P(T ≥ tα|Logistic) 0.326 0.51 0.547 0.732 0.774 0.900
P(TSQ > wa|Cauchy) 0.228 0.32 0.431 0.566 0.659 0.759
P(T> ta|Cauchy) 0.219 0.36 0.419 0.568 0.643 0.757

5. Discussion  and conclusions 

As shown on p. 283 of  [8],  the bounds for the asymptotic efficiency of the test statistics (2) 
and (3) in  the case of there considered sampled distributions do not depend on the number of 
sampled populations, i.e., they are the same in the two-sample case and in the multisample 
case. As concluded in [8], taking into account computed values of the asymptotic efficiencies, 
one sees that a combination of the multisample Kruskal-Wallis statistic (in the two-sample 
case the Wilcoxon test statistic) with the Mood test statistic appears to be a good choice when 
one considers symmetric distributions whose type of tail weight is unknown. However, these 
considerations are related to the asymptotic case, when both m and n tend to infinity. The 
simulation results, given in the previous section do not contradict the mentioned asymptotic 
results. After inspecting the Table 2 it can be said that for small sample sizes and α=0.05 
testing based on (3) is preferable to (2), but for α=0.1 it is advisable to use the Lepage test. 
This suggests that the test based on (3) can be considered as a useful competitor to the Lepage 
test.  
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