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Abstract. The results of the theoretical analysis of selected features of two statistical methods 
used in time delay estimation (TDE): direct cross-correlation (CCF) and the function of 
conditional average value of delayed signal (CAV) have been presented in this paper. The 
model of measured stochastic signals and principle of TDE using CAV and CCF are 
described in this paper. The relative uncertainty of both functions in extreme point and the 
relative standard deviations of TDE using CAV and CCF are evaluated and compared. The 
authors conclude that the method CAV described in this paper has less statistical errors in 
magnitude and location (time delay) estimation then CCF and can be applied to time delay 
measurement of random signals. 
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1. Introduction 

The problem of time delay estimation (TDE) is significant in many areas as radar and sonar 
technology, radioastronomy, location of signal transfer paths or contact-free measurements of 
transport parameters. Determination of the time delay of stochastic signals received from two 
or more sensors is commonly carried out with the use of statistical methods. This problem has 
been thoroughly presented in the literature [1-6], which describes a well-known methods of 
signals analysis in the time and frequency domains. Among the traditional methods used for 
stationary signals, the most common one is direct cross-correlation (CCF) in the time domain 
and the phase of cross-spectral power density in the frequency domain [1-3, 7]. The methods 
based on conditional averaging of signals are relatively new [8-11]. 

 This paper presents the results of comparative research of selected features CCF and the 
method which uses conditional averaging of the delayed signal (CAV) [11]. The relatively 
standard deviations of both functions in extreme points and standard deviations of TDE for 
CCF and CAV were evaluated and compared. The values of signal-to-noise ratio were 
determined for the assumed signal models, where the analysed methods had smaller standard 
deviations of estimation for specific parameters of the analysis. 

 
2. Model of Measurement Signals and Principle of TDE Using CCF and CAV  

In the case of many TDE applications (i.e. measurements of transport parameters of solids 
and flows), the relation for signals x(t) and z(t) received from two sensors is usually given by 
the following formula [1,3]: 

 )t(n)t(y)t(n)t(kx)t(z  0 , (1) 

where: x(t) is the stationary random signal with a normal probability distribution N(0, σx), 
frequency band B and the unilateral spectral power density: 
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k, G are the constant factors; τ0 = d/V is the transport delay equal to the quotient of the sensor 
spacing distance d and the average velocity of object V; n(t) is the stationary white noise, non-
correlated with signal x(t), with the distribution of N(0, σn). The auto-correlation function of 
signal x(t) has the following form: 
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The direct cross-correlation Rxz(τ) of the signals described by the relation (1) can be 
expressed by formula [1]: 
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The function (4) achieves the maximum value for τ = τ0, so that the delay can be determined 
as the argument of the main extreme of this function:  

    )(Rarg)(Rmaxarg xzxz 00   . (5) 

The expected conditional value of the delayed signal z(t) for the condition x(t) = xp is defined 
as follows [11]: 
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where  
px)t(x

)t(zp


   is the conditional probability density for the signal z value at the 

condition x = xp,  xp – selected threshold value.  

A good estimator of the expected conditional value (6) is the arithmetic conditional average 
value of the delayed signal. In practice, its determination entails detection of non-cross-
correlated instant of threshold xp transition of the original signal x(t), starting the registration 
of the delayed signal z(t) fragments in those moments and averaging the set of their value. 
Peak position of CAV determine the transport delay τ0: 

    )(Aarg)(Amaxarg zz 00   . (7) 

The principle of time delay estimation based on CCF and CAV is shown in Figure 1. 

 

a) b) 

 
Fig. 1. The principle of time delay estimation using CCF Rxz(τ) and CAV Az(τ) : a) mutual delayed stochastic 

signals, b) CCF and CAV functions.  
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3. Comparison of Statistical Errors of CCF and CAV in Magnitude Estimates 

The accuracy of TDE depends on gradients and variances of analysing function in the 
neighbourhood of the maximum. The relative standard uncertainty (relative standard 
deviation) of CCF can be written as [1,12]: 
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where N – number of non-correlated samples of signals x(t) and z(t), SNR =( σx/σn)
2 – signal-

to-noise ratio. 

The relative standard uncertainty of CAV can be presented as [11]: 

      
  SNRMkkXMA

Â
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where M – number of non-correlated averaged segments of the delayed signal z(t),  =( xp/σx)
 

– relative threshold value.  

As the result of comparison of (8) and (9) the following expression is obtained: 
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Because CCF and CAV should be determined using non-correlated samples of signals the 
value  M/N can be equal or less then 1. The relation        SNRfR̂u/Âu xyrelzrel 00   for 

M/N = 1, k = 1 and selected values of  is presented in Figure 2. In this case the relative 
standard uncertainty of CAV is always less then for CCF if relative threshold value   1 (Fig. 2). 

 

 

Fig. 2. The relation        SNRfR̂u/Âu xyrelzrel 00   for M/N = 1, k = 1 and selected values of  
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The results of work [11] shows, that optimum value of relative threshold value  is equal 
obout 2. The dependence        SNRfR̂u/Âu xyrelzrel 00   for  = 2, k = 1 and selected values 

of M/N are presented in Figure 3. 

 

Fig. 3. The relation        SNRfR̂u/Âu xyrelzrel 00   for  = 2, k = 1 and selected values of M/N 

4. Comparison of Statistical Errors of CCF and CAV in Locations Estimates 

The  standard deviation of the transport delay τ0 obtained by CCF based on [1,2] can 
evaluated to formula: 
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For CAV can be written, respectively [11]: 
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The comparison of (11) and (12) equations results the following equation: 
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The relation      SNRf/ CCFCAV 00   for M/N = 1, k = 1 and selected values of  is 

presented in Fig. 4. The dependence (13) for  = 2, k = 1 and selected values of M/N are 
presented in Fig. 5. Similarly to magnitude estimation, standard deviation of transport delay 
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for CAV is less than the corresponding values for CCF irrespective of the SNR values if 
relative threshold value   2 and M/N  0,25. 

 

Fig. 4. The relation      SNRf/ CCFCAV 00   for M/N = 1, k = 1 and selected values of  

 

 
Fig. 5. The relation      SNRf/ CCFCAV 00   for  = 2, k = 1 and selected values of M/N 

5. Conclusions 

This work entailed the comparison of statistical errors of the direct cross-correlation and 
the conditional average value of the delayed signal in magnitude estimation and time delay 
estimation for the assumed signal models and the given SNR values. The theoretical analysis 
implies that the relative standard uncertainty of the CAV at the extreme points is less than the 
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corresponding standard uncertainty for CCF irrespective of the SNR values if   2 and N/M 
is in the range 0,25  N/M  1.  
The standard deviation of transport delay obtained using CAV is less than the corresponding 
values for CCF independently of the SNR values if the relative threshold value   2 and 
0,25  N/M  1.    

The experimental verification of the theoretical analysis presented in this work is currently 
undergoing further investigation.  
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