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Abstract. In a field of statistical processing of time series, algorithms used for their 
decomposition to partial constituent components are ordinarily designed using statistical 
characteristics of the analysed series. On the other hand, the designed algorithms can be also 
often characterized by parameters and functions as frequency response, distribution of zeros 
and poles, impulse response, usually used in case of linear signal processing. The paper 
describes some classical algorithms for estimation of a time-series drift and analyses their 
properties using their frequency responses and discusses conditions of their application. 
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1. Introduction 

Standard methodology of statistical time series analysis starts by decomposition of a given 
time series representing realization of a random variable Xi to several constituent components 
(e.g. [1]). Depending on either additive or multiplicative model it is theoretically 

Xi = Ti + Zi + Si + Ri  or  Xi = Ti . Zi . Si . Ri , (1) 

where Ti is a (monotone) function of time called trend, Zi describes a non-random long term 
cyclic process, Si reflects non-random short time periodic seasonal component, and finally Ri 
is a random noise variable representing all the deviations from the ideal deterministic part of 
the model. We suppose Ri is a white noise with normal distribution with expectation 
E(Ri) = 0. Sometimes, the variables describing trend Ti and long-term oscillations Zi are 
summarized together 

Di = Ti + Zi , (2) 

and the resulting summarized variable Di is called drift. The basic task of the time series anal-
ysis is to determine and separate deterministic slow components Ti, Zi, or Di, and periodical 
seasonal series Si from random noise Ri. 

2. Algorithms for Drift Estimation 

Let us assume an additive model now. If we do not deal with models of trend based on func-
tional approximation then the most often used methods for estimation of the slow drift com-
ponents are based on moving average (MA) approach.  

A MA filter is a type of a finite impulse response filter computing a series of weighted aver-
ages of consequential segments of the full data series. For weighted MA filter it is valid that 
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L = L1 + L2 +1  (5) 
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defines an order of the MA filter, i.e. length of its impulse response. The coefficients wk un-
ambiguously defines properties of the 
filter (in time as well as in frequency 
domain) and its impact to processed data. 
If L1 = L2 and the sequence of weight 
coefficient is symmetrical with respect to 
central sample then the filter does not 
introduce any phase distortion. That is 
why odd number of samples in filter im-
pulse response is usually used in this 
case. Another reason for preferring im-
pulse response with odd samples is its 
simpler design. 

In the field of time series statistical pro-
cessing two basic approaches are used for 
design of the filter weight coefficients - algorithms based on smoothing by polynomial func-
tions and filters with exponentially descending weights. The former method usually can take 
advantage of the above mentioned property of the symmetrical sequence of the MA filter 
weight coefficients, in case of the latter it is not possible, in principle. 

3. MA Filters Based on Smoothing by Polynomial Functions 

This method (e.g.[2]) is based on an idea that any “reasonable” function can be quite reliably 
LMS approximated by a polynomial function (Fig.1) of a given order. Then the filtered value 
is determined as a value of the polynomial function at a position of the substituted sample. 

The task necessary to solve before smoothing is to decide which order of the polynomial 
should be used for the approximation and what the length of the approximated segment is. 

Intuitively, we can say that the higher the order of the polynomial is, the broader the frequen-
cy pass-band of the filter is. And the longer the segment is, the narrower the frequency pass-
band is. It can be often found in statistical literature that the length of the MA segment should 
correspond to the period of the seasonal component present in the data series. Generally, it 
can be true. However, relationship between the length of the segment and period of the sea-
sonal component is not so simple.  

Tab.1 depicts weights of filter coefficient for different orders of smoothing polynomials and 
lengths of smoothed data segments. It can be seen that application of the polynomial of the 
first order results in filter with rectangular impulse response, computing response as uniform-
ly weighted mean value. Such filters correspond to so called Lynn’s filters [4], very often 
used filters in biomedical signal and data processing as ECG signals [5]. 

In statistical time series processing, data representing analysed processes are often sampled 
with a month sampling period. Such data (biological, financial, ...) usually have a seasonal 

 

Fig.1 Smoothing of a sequence of five samples by means 
of a polynomial of the 1st order  

Table 1. Weights of MA filters determined by means of polynomial smoothing (partially according to [2]) 

Length of 
the segment 

Order of the approximating polynomial
1st 2nd and 3rd 4th and 5th 

3 1/3.(1, 1, 1) (0, 1, 0) (0, 1, 0) 

5 1/5.(1, 1, 1, 1, 1) 1/35.(-3, 12, 17, …) (0, 0, 1, ...) 

7 1/7.(1, 1, 1, 1, 1, 1,1) 1/21.(-2,3,6,7,...) 1/231.(5,-30,75,131,...) 

9 1/9.(1, 1, 1, 1, 1, 1, 1, 1, 1) 1/231.(-21, 14, 39, 54, 59,...) 1/429.(18,-45,-10,60,120,143,..) 
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component with one year period, it means 12 samples, as well. From the above mentioned 
recommendation it follows that the length of the filter 
impulse response should be 12 samples,  

as well. Magnitude frequency response |H1(z)| of such a 
filter is depicted in Fig.2a. We can see that zero points 
of the response are exactly at frequencies that corre-
spond to seasonal period and its integer multiples. Un-
fortunately, the impulse response has even number of 
samples and that is why a phase frequency response is 
not precisely linear, even if the deviations from lineari-
ty do not look important. To improve a shape of the 
phase response of the filter, serial connection of the 
filter smoothing data with a polynomial of the first or-
der with filter having transfer function defined as Hଶ(z) = ଵଶ (1 + zିଵ) . (Fig.2b) (6) 

Impulse response of the resulting filter is  

g3(n) = 1/12.{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}  
  {1/2, 1/2} =  

= 1/12.{0.5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5}, 
(7) 

which is the most commonly used filter in statistical 
decomposition of time series. For its transfer function it 
is valid that (Fig.2c) Hଷ(z) = భభమ(0.5 + zିଵ + zିଶ + zିଷ + zିସ + +zିହ + zି଺ + zି଻ + zି଼ + 	zିଽ + +zିଵ଴ + zିଵଵ + 0.5zିଵଶ) (8) 

Its zeros remain at the same frequency as zeros of the 
original filter and attenuation of the side lobes is pro-
portional to that of H2(z). 

To improve attenuation of the higher frequency compo-
nents (with frequency above the fundamental frequency 
of the seasonal component) it is possible to use a serial 
connection of two filters with H1(z) (Fig.2d). 

All the above described filters have zeros at frequencies 
corresponding to those of periodical seasonal compo-
nent (integer multiples of 0.52 rad.sample-1). It means 
that the estimated drift is free of any influence of the 

seasonal component.  

In Fig.3 there are magnitude frequency responses of MA filters based on smoothing data by 
polynomial of higher orders – the 3rd and 5th order. It is obvious that the higher polynomial 
order represents broader width of the filter pass-band and on contrary longer length of the 
filter impulse response (with the same polynomial order) decreases  filter cut-off frequency. 
In all the depicted examples, cut-off frequencies of the filter pass-bands are higher than the 
fundamental frequency of the seasonal component. It means that the seasonal components 
have to substantially affect outputs of the filters. 

 
 a) 

 
 b) 

 
 c) 

 
 d) 

Fig.2 Magnitude frequency responses of 
the MA filters – a) rectangular impulse 
response of the length of 12 samples; 

b) filter with frequency response accord-
ing to eq.(6); c)  filter with frequency 
response according to eq.(8); d) serial 
connection of two filters with H1(z). 
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4. Filters with Exponential Weights 

Formula defining exponential smoothing filter 

۾܆۳ܑܡ  = (૚ − ܑܠ(܊ + (૚ − +૚ିܑܠ܊(܊ (૚ − +૛ିܑܠ૛܊(܊ (૚ − ૜ିܑܠ૜܊(܊ + ⋯ 

(9) 

can be rewritten recursively as ۾܆۳ܑܡ = (૚ − ܑܠ(܊ ሾ(૚܊+ + − ૚ିܑܠ(܊ + (૚ − ૛ିܑܠ܊(܊ + (૚ − +૜ିܑܠ૛܊(܊ ⋯ ሿ = (૚ − ܑܠ(܊ + .܊  ۾܆૚۳ିܑܡ

This difference equation corresponds to a transfer 
function 
 H୉ଡ଼୔(z) = 1 − b1 − b. zିଵ = a1 − (1 − a). zିଵ (10) 

 

where b is so called discount constant and a = 1 – b is a 
smoothing constant. An example of modular frequency 
response is in Fig.4. The function is smooth without 
any zero points. It means that the filter is really not 
acceptable for processing time series with seasonal 
component. The width of a pass-band is proportional to 
the smoothing constant a. The greater the value of the 
smoothing constant is, the broader is the filter pass-
band and the filter is also more stable. It is also 
necessary to realize that the impulse response is not 
symmetrical and that is why the phase frequency 
response of the filter is not linear (Fig.4). That fact can 
cause a heavy phase distortion in the filtered series. 

 

 
Fig.4 Magnitude and phase frequency response of the filter 

with exponential weight for smoothing constant a=0.2 
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c) 

Fig.3 Magnitude frequency responses of 
filters designed for – a) 3rd order polyno-
mial and 11 sample impulse response; b) 
3rd order polynomial and 13 sample im-

pulse response; c) 5th order polynomial and 
11 sample impulse response. 
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5. Conclusions 

Frequency responses as well as other ways of description properties of linear algorithms de-
signed using statistical characteristics of the analysed time series can and should be used as an 
adequate tool for verification of assumed properties of the algorithms and their expected ef-
fect to the processed data. Unfortunately, it is not the case in statistical approaches to time 
series processing. 

Acknowledgements 

This work was partially granted by the research project No. 2/0210/10 of the VEGA Grant 
Agency in Slovakia. 

References 

[1] Falk M. A First Course on Time Series Analysis. Examples with SAS. Chair of Statistics, 
University of Würzburg, 2006, 240p. 

[2] Cipro T. Financial Econometry. Ekopress, Praha 2008, 538p (in Czech). 
[3] http://en.wikipedia.org/wiki/Moving_average (Feb 25th, 2011) 
[4] Lynn P.A. An Introduction to the Analysis and Processing of Signals. Macmillan, 1989, 

277p. 
[5] Holcik J, Kozumplik J. Digital Filtering of ECG Signals. Lékař a technika, 17 (6):114-

119,1986 (in Czech). 


