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Abstract. It is known that in small samples the asymptotic variance of a maximum likelihood 
estimator for the common mean in random effects model underestimates the true variance and 
leads to too short confidence intervals for the true consensus value. This is illustrated e.g. in 
Rukhin, Metrologia 46(323-31), 2009. We look at two concrete small sample situations to 
investigate the possibility of improving the confidence intervals by employing bootstrap. 
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1. Introduction 
Estimation of the common mean, determination of its uncertainty and of a confidence interval 
for its true value are tasks arising in certification of reference materials or in interlaboratory 
studies, see e.g. [1], [2]. The model used is very often the random effects model allowing for 
different within-laboratory variances and the estimates of the common mean are various 
weighted means of the estimates supplied by the different laboratories. Procedures of this 
kind are discussed at length in [1] and it is stressed that they differ in how their variance is 
estimated. However, this is of crucial importance and influences in turn the quality of the 
derived confidence intervals. In situations when there is no simple formula for the variance of 
a procedure or for the distribution of an (approximate) pivot underlying the construction of 
confidence intervals, bootstrap (see [3]) is a generic method that may be used to overcome the 
difficulties. By nature, it is an asymptotic method; however, in reality (when e.g. certifying a 
reference material) it is not uncommon to have a relatively small number of observations 
coming from only a few laboratories. In this paper we will study performance of bootstrap 
confidence intervals for the common mean in two such situations. The model and methods 
used are described in detail in Section 2. Section 3 summarizes results of our simulation study 
and Section 4 offers some concluding remarks. 

2. Model and Methods 
The model used for describing measurements of essentially the same quantity obtained in k 
laboratories is 

    yij=μ+ bi+ eij , i=1,...,k>1, j=1,...,ni>1   (1) 

where yij denotes the j-th observation in the i-th laboratory, μ is the unknown common mean, 
bi ~ N(0,τ2) is the random effect of the  i-th laboratory and eij ~ N(0,σi

2) are random errors. All 
bis and eijs are assumed to be mutually independent, τ2 ≥0, σi

2 >0, i=1,...,k, are unknown 
nuisance parameters. The resulting model for the laboratory means yi=Σjyij/ni is yi ~ 
N(μ,τ2+θi

2), where θi
2=σi

2/ni. An unbiased estimator of θi
2 is ui

2=Σj(yij - yi)
2/[ni(ni-

1)]~θi
2χi

2/(ni-1), where χi
2 denotes a χ2distribution with ni -1 degrees of freedom. 

Estimators for μ of the form Σiwiyi, Σiwi=1 were considered in [1]. We will use two of them: 
the maximum likelihood (ML) estimator, μML,  and the DerSimonian-Laird estimator, μDL. For 
details on ML estimators of the unknown parameters in model (1) see [4]. Denoting them μML, 
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τ2ML, θ2
iML, i=1,...,k, asymptotic considerations lead to the variance of μML being estimated as 

        VarA(μML)=(Σi 1/(τ2ML+θ2
iML))-1     (2) 

and the corresponding 95% confidence interval for μ being  

     μML±q0.975√VarA(μML),     (3) 

where q0.975 denotes the 97.5th quantile of N(0,1). This interval was found in [1] to be 
sometimes too short, i.e. its coverage was lower than the nominal level. The interval based on 
μDL suggested in [1], which performed quite well in the simulations therein, is of the form  

     μDL ±t0.975,k-1√Varw(μDL),      (4) 

where t0.975,k-1 denotes the 97.5th quantile of the t-distribution with k-1 degrees of freedom and 

    Varw(μDL)=Σiw
2

iDL(yi-μDL)2/(1-wiDL)      (5) 

where wiDL=viDL/ΣiviDL, viDL=1/(τ2DL+ui
2) and τ2DL=max(0,[Σiui

-2(yi-y0)
2-k+1]/[Σiui

-2-Σiui
-4 

(Σiui
-2 )-1]), y0 =Σiui

-2 yi/Σiui
-2 . 

Since μML=ΣiwiMLyi , with wiML=viML/ΣiviML, viML=1/(τ2ML+θ2
iML) (see [4]), its variance may be 

estimated similarly to the variance (5) of  μDL, see also [1], p. 327, so that  

                                               Varw(μML)=Σiw
2

iML(yi-μML)2/(1-wiML).                                        (6) 

However, what quantile should be used in combination with this estimator to form a 
confidence interval for μ is not clear. This difficulty can be avoided by employing bootstrap. 
In this paper we will consider only bootstrap t-intervals, which are suited especially for 
location parameters, see [3], p. 161. A 95% bootstrap t-interval is derived as follows: 

1. Based on yis, u2
is estimate the unknown parameters μest, τ

2
est , θ

2
i est, i=1,...,k and Var(μest). 

2. Generate NB bootstrap samples from model (1) with the unknown parameters replaced by 
their estimates from the step 1. 

3. For each of the NB bootstrap samples, estimate the unknown common mean and its 
variance, μestB, Var(μestB), and compute T=(μestB -μest)/√Var(μestB). 

4. The interval for μ is [μest - qT,0.975√Var(μest), μest - qT,0.025√Var(μest)], where qT,0.025 (qT,0.975) 
denotes the 2.5th (97.5th) quantile of the distribution of T (estimated from the NB values of T). 

In our simulation study we considered model (1) with k=3, n1=10, n2=10, n3=12, μ=0, 
θ2

1=2.7, θ
2

2=1.9, θ2
3=0.5 (case I) and θ2

3=2.1 (case II). τ2 was 0, 0.25*m, m, (1+M)/2, M, 
4*M, m=min(θ2

i), M=max(θ2
i), a choice inspired by [5]. For each scenario, we simulated 

1000 sets of observations of (1) and constructed appropriate confidence intervals for μ. Based 
on these 1000 intervals we estimated the coverage of the respective procedures. We 
considered interval (4) and its bootstrap version (using μDL, Varw(μDL)), interval (3) and its 
bootstrap version (μML, VarA(μML)), as well as a bootstrap interval based on μML, Varw(μML). 
For obtaining bootstrap t-intervals NB=1500 was used. Computations were done in R. 

τ2 0 .25m m .5(1+M) M 4M 0 .25m m .5(1+M) M 4M 

DLA 4.08 4.39 4.94 7.30 8.15 14.0 6.01 6.53 8.32 8.07 9.02 14.4 

DLB 5.05 5.65 6.30 9.92 11.7 19.5 6.91 7.66 9.68 9.42 10.8 16.9 

MLBw 4.71 4.95 5.42 7.08 7.92 23.1 6.76 7.13 8.80 8.62 9.62 18.0 

Table 1: Median lengths of the simulated 95% confidence intervals in case I (left) and II (right). Notation is the 
same as in Figure 1. 
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3. Results  
Figure 1 shows simulated probabilities of coverage of the different intervals in the two cases 
of model (1) as described in the previous Section. We see that the approximate interval (4) 
based on the DerSimonian-Laird estimator may have lower probability of coverage than the 
nominal level, especially when the within-laboratory variances are substantially different 
(case I). It is also clear that the employment of bootstrap improves the performance of the 
interval. In case of the ML estimator and the associated intervals, interval (3), as expected, 
does not maintain the desired probability of coverage. Bootstrap results in an improved 
behaviour of the interval, but a real improvement appears only in combination with the 
modified estimator of the variance (6). A comparison of the length of the different intervals 
makes sense only in cases when the nominal confidence level is preserved. In Table 1 we 
state median lengths obtained in the simulations for 3 of the considered intervals for which 
the actual probability of coverage was roughly satisfactory. We see that the improvement in 
the probability of coverage resulting from employing bootstrap in case of interval (4) does not 
result in a too dramatic increase in the length. 

 

4. Discussion 
Even though further investigation is needed to clarify the matter, the studied cases show a 
potential for an improvement in the probability of coverage of confidence intervals for the 
common mean in small samples when bootstrap is employed. However, a naive application of 
bootstrap may not be of help, as can be seen from the case of the ML estimator, when only 
bootstrap combined with a modified estimator of the variance led to a meaningful increase in 
the probability of coverage. The assumption for the bootstrap t-intervals to work well is that 
the quantity T*=(μest -μ)/√Var(μest) is an approximate pivot, i.e. its distribution is 
(approximately) independent of the unknown parameters. In the considered model, this means 

Fig. 1: Simulated probabilities of coverage for the two cases of model (1). DLA denotes interval (4), DLB its
bootstrap version, MLA denotes interval (3), MLB its bootstrap version and MLBw a bootstrap interval
using (6). Shown is the nominal level 0.95 together with limits which the simulated probability of
coverage should fall into with probability 0.95 if the true coverage is 95%. 



MEASUREMENT 2011, Proceedings of the 8th International Conference, Smolenice, Slovakia 
 

72 

independence not only of the parameter of interest, the common mean, but also of the 
nuisance parameters τ2, θ2

i, i=1,...,k.  For μML this condition seems to be better satisfied with 
(6) than with (2) as can be seen from Figure 2 comparing the distributions of the respective T* 
when τ2=0 and when τ2=10 in case I considered in our simulations. 

Although not reported, we examined also bootstrap percentile intervals (such an interval is 
formed by the lower and upper quantiles of μestB  estimated from the NB values of μestB ), but 
except for the case when τ2=0 (and sometimes τ2=0.25*m), the obtained probability of 
coverage was unsatisfactory. 

Currently, further investigation into the performance of bootstrap in combination with 
weighted means estimators of μ is being undertaken. 
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Fig. 2: QQplots comparing the distributions of T* with (6) (left) and with (2) (right) for two different values of
τ2 

in case I of model (1). The closer to the identity line the points lie, the more alike the two distributions


