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Abstract. Simulation tools are in used to manage the grids by allowing the reconstruction of
the state of the grid (flows and pressures). This allows tracking of the gas properties while the
gas is transported by the grid. In practice often only rough estimates of the momentary
consumption by the end users are available creating uncertainty about the value calculated
from the reconstruction of the state and therefore in the tracking of the transported gas
properties. We present an approach based on the Guide to the Expression of Uncertainty in
Measurement (GUM) Supplement 1 to evaluate the uncertainty involved with the state
reconstruction and property tracking. In future, gas grids will transport gasses with a wider
range of calorific values at the same time which complicates the correct billing of the
delivered energy. We show how the uncertainty involved with the state reconstruction and the
property tracking can be used to monitor the validity of a quality tracking system for natural
gas grids.
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1. Introduction

Natural gas grids are an important infrastructure in Germany since a significant fraction
(about 30%, 2005) of the energy consummated today is generated using natural gas.
Distributed natural gas grids can transport and store significant amounts of energy
equivalents. Therefore gas grids will play an important role in solving problems with the
energy supply in future by complementing the electrical grids.

In Germany, natural gas from 8 major origins is distributed through the transport grids. The
composition of the gas is mainly dependent on its origin and for some sources it also has
some time dependency. Table 1 lists the major natural gas sources for Germany together with
some important properties. The calorific value is varying between 10.6 kWh/m® and 12.9
kWh/m’. The maximal variability is about 20 %. The CO, fraction varies between 0 % for
liquefied natural gas (LNG) and 2.9 % for bio-gas.

Table 1. Summary of natural gas sources for Germany with their main properties [1].

Russia  North Denmar  Libya Nigeria  Egypt Bio- Bio-gas

Sea k LNG LNG LNG gas +LPG
Calorific kWh/m’ 11.2 11.6 12.1 12.9 12.2 11.3 10.6 11.6
value
Difference 3.4 % 0 +43% +11.2% +52% 26% -8.6% 0
to ref. 11.6
CO, Mol % 0.18 1.94 0.60 2.90 2.68

The most important property of natural gas is its calorific value. For industrial users the CO,
content is important, too because it might affect their CO, balance.

The calorific value of natural gas can be measured with standard calorimeters or gas
chromatography. But measuring equipment is expensive to install and to operate. Therefore in
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Germany most transport grids are equipped with gas quality tracking systems since several
decades.

Transport grids have a structure with a few input and output nodes all equipped with flow
meters and long distance pipelines connecting them. Their nominal pressures are between 70
and 100 bar. Reliable quality tracking is relatively easy for transport grids.

Recent liberalisations in the market for natural gas and the introduction of bio-gas have lead
to increased variability of the natural gas quality in the distribution grids. Distribution grids
are operated with a nominal pressure between 10 bar and 25 bar. They are connecting the
customers to the transport grids. Distribution grids have usually an intermeshed structure with
several connections to different transport grids. The measurement infrastructure is often
incomplete so that some output flows cannot be measured. Quality tracking for distribution
grids is therefore challenging. But the concepts of uncertainty in measurement introduced by
the Guide to the Expression of Uncertainty in Measurement (GUM) [2] and especially its
Supplement 1 [3] can be used to manage the challenge.

2. Tracking Gas Qualities in Distribution Grid for Natural Gas

Quality tracking systems for transport grids and distribution grids can be decomposed in two
parts (Fig. 1). The reconstruction of state calculates the internal (not measured) flow rates and
pressures based on the grid topology and the measured input and output flows, the grid
pressure and the temperature. A gas transport model evaluates the gas quality of the output
flows based on the internal flows and the gas qualities of the input flows.
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Fig. 1. Structure of the flow of information in a gas quality tracking system.

The reconstruction of state and the gas transport model are realized by complex software
systems involving heavy numerical calculations and the solution of a system of differential
equations. For the evaluation of uncertainty the calculations inside the reconstruction of state
and the gas transport model can be treated as a black box.

3. Model of Evaluation

The reconstruction of state and the gas transport model are treated as the model function or
model of evaluation. Input gas quality, input flows, output flows, grid pressure, temperature
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and output gas qualities are time series data. Every point in the time series is an individual
input or output quantity. The time resolution should be one value per hour or better and the
evaluation period is usually one month or more. This results in a system of a very large
number of input and output quantities. For our studies we have used the small distribution
grid simulation developed at the TU Clausthal [4]. The topology of the distribution grid is
shown in Fig. 2. It is a small grid with 4 input nodes (K000, K002, K004 and K006), 25
output nodes and the time resolution is 12 min, but the model for the uncertainty evaluation
has about 30000 input quantities and about 20000 result quantities.

Fig. 2.
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Topology of the grid under investigation with 4 input node (K000, K002, K004 and K006) and 25

output nodes.

Table 2. Secification of the knowledge about the input quantities for the uncertainty evaluation.

Input quantity Knowledge Distribution
Calorific value of the gas sources <1% normal
Source (input) flow rate <2% rectangular
Drain (output) flow rate online <2% rectangular
load profile 30 % normal
Grid reference pressure <5% rectangular
Temperature 0°C-15°C rectangular
Grid topology length of pipes <10% rectangular
diameter <5% rectangular
roughness <50 % rectangular

The available knowledge about the input quantities is summarized in Table 2. It should be
noted that the output flow rates for 15 nodes out of the 25 nodes are actually not measured but
estimated based on load profiles representing the typical customer consumption. This leads to
the relative large uncertainties for these flow rates of 30 %. The specified knowledge in Table
2 represents the typical accuracy with which data can be made available for distribution grids.
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4. Uncertainty Calculation

For the uncertainty calculation we have chosen the Monte Carlo (MC) simulation as
described in GUM Supplement 1. Even if an evaluation model of this size would be semi-
linear it is a huge effort to propagate all variances. The numerical calculation of the sensitivity
coefficients would require at least 30000 complete calculations of the evaluation model which
in this case is very demanding in respect to computational effort. If the number of Monte
Carlo trails can be limited then MC is more economic.

With the assumption that the variances of the MC results are converging, the number of MC
trails needed to achieve the required relative accuracy » can be calculated [5] using

2
n:ixnorm( —1_ij (1)

where 7 is the number of MC trails, p is a chosen probability for the accuracy interval and
norm() is the quantile of the normal distribution. We choose a relative accuracy for the
uncertainty of 5% (r=0.05) with a probability of 95 % (p=0.95) which leads to 1600 MC
trails.

For our studies we have developed a Python script which generates for each run a set of
random factors with expectation value of 1.0 and distribution based on the specification in
Table 2 for all input quantities. For each MC run the original input data is multiplied with a
set of factors and the reconstruction of state and the gas transport model are calculated. The
uncertainties were calculated from the standard deviation of the results from all runs. Since
we could only perform a limited number of MC trails a coverage interval based on spread of
results would not be reliable. Therefore we chose a fixed coverage factor of k=2 to arrive at
an expanded uncertainty statement which covers a large fraction of possible result values.

5. Monte Carlo Simulation Results

Since we are mainly interested in studying the uncertainties introduced by the limited
knowledge about the transport process through the grid, we have treated the calorific values
as perfectly known with no uncertainties during our simulations. The uncertainties introduced
by the grid transport and the uncertainties associated with the calorific values of the gas
sources are uncorrelated and the variances can simply be added to get the combined
uncertainty of the calorific values of the output flows.

For the discussion we use simulation results from a period of 160 h while the calorific values
of the sources were varying between 10.7 kWh/m® and 11.2 kWh/m’.

In our simulations we found that the uncertainties associated with the reconstruction of the
internal flow rates are time dependent and are varying a lot between different pipelines. Some
internal flow rates can be reconstructed accurately with an uncertainty better than 2.5 % (see
Fig. 3. For many internal flow rates the uncertainty of the reconstruction is about 30 %, but
for some flow rates the uncertainty is 300 % and more (e.g. pipeline 0279, Fig. 4). It can be
observed that the uncertainties are larger if the flow rates are small in respect to diameter of
the pipelines.

Although it is useful to analyse the uncertainties associated with the reconstruction of the
internal flow rates, the final quantities of interest are the calorific values and their associated
uncertainties. Since the calorific values are only varying by about 5 % during our simulation
period, the effect of the limited knowledge of the transport process on the gas transport model
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calculation can be expected to be significantly smaller than the uncertainty associated with
the reconstruction of state.
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Fig. 3. Simulation results for the flow rate in pipeline 0729 and pipeline 0282. The top graph shows the flow
rate and the bottom graph shows the relative expanded uncertainty (k=2).
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Simulation results for the flow rate in pipeline 0279 and the calorific value for node K0O1. The top
graph shows the flow rate or the calorific value and the bottom graph shows the relative expanded
uncertainty (k=2).

In our study we found that the uncertainties of the calorific values are also time dependent
and they are varying between output nodes. Fig. 4 shows the calorific value at node K001
which has the largest consumption during the investigated period. The uncertainty is most of
the time well below 0.5% with one peak up to 0.8 %.
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Fig. 5. Simulation results for the calorific value for node K605 and node K607. The top graph shows the
calorific value and the bottom graph show the relative expanded uncertainty (k=2).

It can be observed that rapid changes over time of the calorific value are correlated with an
increase in the uncertainty of the calorific value. This can be explained by the fact that the
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reconstruction of the internal grid state is used by the gas transport model to calculate the
throughput time of the gas. Uncertainties in the reconstruction of the internal flow rates lead
to uncertainties in the calculated throughput time. The effect on the calorific value is therefore
dependant on how rapidly the calorific value is changing in time.

Output node K605 and K607 are connected via pipeline 0279 (see Fig. 2). The associated
uncertainty with the reconstructed flow for this pipeline is as large as 700 %. As shown in
Fig. 5, the calorific value of the nodes can still be reconstructed relatively well with a peak
uncertainty of 1.4 %. The uncertainty is 0.5 % or less most of the time. This demonstrates that
good quality tracking is possible even if the knowledge about the internal state of the grid is
rather limited. As expected the calorific values and the uncertainties for node K605 and K607
are very similar. The signal at K607 is a bit shifted in time since the distance to the major
source at K006 is larger.

For billing purposes often an average calorific value for a longer period (1 month or 1 year) is
of interest. It is possible to calculate the uncertainty of average value by including the
averaging in the model used by the MC calculations.

6. Conclusions

Uncertainty evaluation according to GUM Supplement 1 is a useful addition to quality
tracking systems for natural gas grids. Especially for distribution grids where some of the
output flow rates cannot be measured and are only estimated by load profiles, it is difficult to
ensure that the calculated calorific values are reliable under all possible operating conditions
without evaluating uncertainties.

Providing a complete result including measurement uncertainty for all calorific values
characterising the reliability of the gas transport model and the reconstruction of state
supports the decision that the results are ‘fit for its intended use’.

The uncertainty evaluation is not replacing a validation of the simulation model by real
measurements. The uncertainty statement is not covering for differences between the model
and the real system. It is a statement about the reliable of the results under the assumption that
the model is correct. An evaluation of uncertainty is complementing the ongoing operation of
quality tracking system, ensuring that all the results are meaningful over time.
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