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Abstract. We introduced and implemented two numerical methods, which estimate the correlation 
dimension from a finite set of data. The first is focused on identification of the scaling region in the 
correlation sum computed from the data. We find candidates for the linear region of various lengths 
and then combine the obtained results to compute the correlation dimension estimate. The second 
method uses Gaussian mixture method to predict behavior of the correlation integral and location 
of the scaling region. The aim of this paper is to compare these methods on various datasets with 
known correlation dimension. 

Keywords: Chaotic Attractors, Correlation Dimension, Scaling Region, Gaussian Mixture 
Model 

1. Introduction 

Correlation dimension is a measure of the dimensionality of a set of points and can be understood as 
a parameter that characterizes the complexity of strange attractors. It is a frequently used tool for 
detecting chaotic behavior in dynamical systems. According to [1] the correlation dimension 
(further denoted as ܦଶ) of the attractor reconstructed from one variable using time delays and 
embeddings in higher dimensions is equal to the correlation dimension of the original attractor. 
These results engendered an extensive study of computational estimates of ܦଶ from measured data. 
In practice, this property can be used to help us understand the dynamics of many biological, 
chemical, climatological or financial dynamical systems.  

In the past decades, the computational power experienced a rapid development. That leaves space 
for further improvements of methods that compute ܦଶ  more accurately.  

Definition of Correlation Dimension 
Let us denote ݔଵ, ⋯,ଶݔ	 ,  ே the set of ݇-dimensional data points lying on a chaotic attractor of ourݔ
interest. We follow the Grassberger-Procaccia algorithm [2] and define the correlation sum (ݎ)ܥ as 

(ݎ)ܥ  = 2ܰ(ܰ − 1)  Θ൫ݎ − ฮݔ − ฮ൯ேݔ
ୀାଵ

ே
ୀଵ  (1)

where ‖∙‖ computes the Euclidean distance, ܰ  is the number of the data points, Θ(∙) is called 
Heaviside function defined by 

(ݏ)߆  = ቄ1 for	ݏ > 0,0 for	ݏ ≤ 0. (2)

The right-hand side of the Eq. (1) computes number of pairs of given data points whose distance is 
less than some given radius ݎ > 0, normalized by the total number of pairs. Equivalently, it is the 
cumulative distribution of probability that two random points from given dataset are closer than ݎ. 
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Furthermore, it can be interpreted as an estimate of the cumulative distribution of probability of the 
pair distances of the data on the original attractor.  

Taking increasingly larger data sets, the probability is expected to behave as the power law ݎమ for 
small ݎ. Subsequently, the logarithm of the correlation sum (ݎ)ܥ is expected to be a linear function 
of the logarithm of ݎ for small ݎ. The correlation dimension is defined as the slope of this linear 
function, i.e., 

ଶܦ  = lim→ limே→ஶ߲ ln((ݎ)ܥ)߲ ln(ݎ)  (3)

Problems with Finite Datasets 
In practice, we encounter only finite datasets. Hence, the Eq. (3) cannot be applied exactly in 
practical computations. Our choice of the size of the dataset is restricted by various factors from 
measurement requirements and limitations (practical reasons) to time complexity of computations 
(computational reasons).   

Due to the self-similarity of strange attractor, we assume that ln((ݎ)ܥ) behaves as a linear function 
of ln(ݎ) for some range of ݎ. The key problem is to detect this so-called scaling region. The size of 
the dataset limits the smallest reasonable choice of ݎ. For very small ݎ, due to the lack of data, there 
are none or only a few pairs within such a small distance. That makes (ݎ)ܥ a poor estimate of the 
cumulative distribution function of pair distances for such small values. For ݎ that approaches the 
actual size of the attractor, the edge effects begin to play an important role and ln((ݎ)ܥ) is no 
longer linear, but becomes saturated. 

In the past years, the most common method to find the scaling region was the so-called visual 
inspection. The plot of ln((ݎ)ܥ) was shown to an expert, who decided where the linear region was 
and the slope in this region was denoted as ܦଶ. Many have tried to improve and automatize this 
method. Surprisingly, many ideas failed, giving poorer results than this oracular method.  In [3], the 
method where the middle quarter of the vertical axis is used to determine the scaling region (the 
time series is normalized to [0,1]) is mentioned. In [4] the approximation of ln((ݎ)ܥ) by a sum of 
linear and non-linear functions of ln(ݎ) is used, followed by the limit of ݎ to 0. The nonlinear term 
is chosen so that its limit is 0. This approach gives very good results especially for some systems 
with slow convergence. A new method using K-means is introduced in [5]. The latter paper contains 
also citations of several notable methods examined recently. 

Aside from the aforementioned problems we also need to be careful with temporal and geometrical 
correlations. In a time series some points are close not due to geometrical attributes of the attractor, 
but due to the closeness in time. This was proven to cause underestimation of the correlation 
dimension and the cure called the Theiler window was introduced in [6]. Another factor that can 
affect the accuracy of computed results is the embedding dimension of the data. The higher the 
dimension, the more data we need to capture the attractor. The estimate of the size of the dataset and 
the underestimation of correlation dimension in case of deficient data can be found for example in 
[7]. In this paper we overcame these last two problems by choosing ܰ to be large enough.  

2. Subject and Methods 

We propose two methods, each with its own way of dealing with the problem of identification of the 
scaling region. The main aim of our work was to find a method, which is accurate, fast and can be 
used to evaluate ܦଶ automatically for large datasets.   
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Method 1: Linear Region Finding (LRF) 
In the first method we begin with computation of the correlation sum for logarithmically equidistant 
values of r. The data are normalized, so that the size of attractor is less than 1. We concentrate on 
finding the region on which ln((ݎ)ܥ) is linear and this region has certain defined length. For this 
purpose we use linear regression and least square method to compute and compare the error terms. 
Then we compare the obtained values of slopes and the position of these regions for various lengths 
and combine these results to obtain the value of ܦଶ. 

This method can be considered as an improved visual inspection method, with the slight difference 
that not the expert, but the computer chooses the linear region and computes ܦଶ. 

Method 2: Gaussian Mixture Model (GMM) 
In the second method we use a two-pass approach to estimation of the cumulative distribution 
function of the pair distances and assessment of the scaling region. 

In the first pass through the data, we begin with computing mean values and standard deviations of 

distances to the 1st, 2nd, 3rd,… , (ܰ − 1)-th nearest neighbors in the dataset. We assume the 
distribution of ݅-th nearest neighbor is log-normal. Then, by using the Gaussian Mixture Model 
method, we compute a model-based estimate for the cumulative distribution (ݎ)ܥ.  
In the second pass, we exploit estimate of (ݎ)ܥ to generate a non-uniform binning of the interval 
between minimum and maximum distance found in the data, so that a reasonable number of pairs is 
accumulated in each bin. This approach efficiently addresses the problem of insufficient statistics 
for a good estimation (ݎ)ܥ in small radii. 

Finally the scaling region is assumed between the right boundary of the first bin and the radius 
where ߲ ln((ݎ)ܥ) /߲ ln(ݎ) reaches its maximum. 

Data Specification 
We tested both our algorithms on two different data groups:  

1. Cantor set, Sierpinsky triangle, and  Fractal pyramid,  
2. Logistic map (ݎ = 4), Normally distributed one-, two-, and three-dimensional data. 

The first group was generated using random generator and iterative algorithm that placed each point 
deeper and deeper into the fractal structure. We decided for these fractal sets because their 
correlation dimensions are well known. The data for logistic map were obtained using iterative 
algorithm ݔାଵ = ݎ ∙ ݔ ∙ (1 − ݎ ) withݔ = 4. The correlation dimension of this dataset is exactly 
1 (proof can be found in, e.g., [4]). The last three datasets were generated by means of an 
independent identically distributed Gaussian pseudo-random generator which, in theory, delivers 
data with correlation dimension equal to the number of dimensions.  

Each data set consisted of 100 000 points. In the experiments with smaller size of data we used a 
subsample of the original data. 

3. Results and Discussion 

In Table 1., the results provided by our methods are shown. GMM gives in general better results 
than LRF. The computations from randomly distributed data are falling behind with increasing 
dimension, which is in consensus with the ideas in Introduction. This happens because in higher 
dimensions more data points are needed to capture the behavior of the correlation integral with the 
same accuracy. It follows that the accuracy must drop if the number of data is kept constant. 
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The poorest accuracy is obtained in the computation of ܦଶ of the logistic map. In [4] one can find 
the proof that the convergence of the correlation sum is very slow.  It is only natural that, in such a 
case, much more data is needed to reach certain accuracy and that is the reason why our results are 
underestimated. As already mentioned, in [4] authors address this issue by adding a non-linear term, 
which led very precise results limiting ݎ to 0. However, the results for 1D and 2D random data are 
more accurate with our methods, with even less data points that they had in their experiment (they 
obtained 1.072 and 2.133 for ܰ greater than 106). 

Table 1. Comparison of computed values of correlation dimension by the Linear Region Finding (LRF) 

method and Gaussian Mixture Model (GMM) method for ܰ = 10	000 and ܰ = 100	000 with the 
exact values. The grayed cells indicate the winning method given the dataset and its size. 

Dataset 
ࡺ = 	 ࡺ =   Theoretical 

value LRF GMM LRF GMM 
Cantor set 0.6201 0.6298 0.6217 0.6297 0.6309 
Sierpinsky triangle 1.5818 1.5814 1.5683 1.5811 1.5849 
Fractal pyramid 2.3041 2.3179 2.3099 2.3110 2.3219 
Logistic map (r=4) 0.9041 0.9284 0.9041 0.9254 1.0000 
1D normal data 0.9964 1.0002 0.9999 1.0023 1.0000 
2D normal data 1.9798 1.9815 1.9923 1.9931 2.0000 
3D normal data 2.9420 2.9489 2.9780 2.9766 3.0000 

4. Conclusions 

We have shown that the results computed by the GMM and LRF methods are in good consensus 
with the exact values of the correlation dimension of various tested datasets. Moreover, the GMM 
method gives consistently better results than the LRF method.   

It is quite clear, that these methods work well for computer generated noise-free data. However, 
most real-world data are usually contaminated with some level of noise. In many practical situations, 
one may need to reconstruct the system from a small number observed variables. That means our 
methods have to be tested under such conditions before applied to such tasks. The level of accuracy 
that we obtained in our existing experiments hints on promising results in this area too. 
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