
MEASUREMENT 2013, Proceedings of the 9th International Conference, Smolenice, Slovakia 

 

35 

On Exact Multiple-Use Linear Calibration Confidence Intervals  

1
V. Witkovský 

1
Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia 

Email: witkovsky@savba.sk  

Abstract. The multiple‐use calibration problem is a problem of constructing appropriate 

simultaneous interval estimators (calibration confidence intervals) for values of the variable 

of primary interest, say xx, based on possibly unlimited sequence of future observations of the 

response variable, say yy, and on the results of the given calibration experiment, which was 

modeled/fitted by a linear regression model. Such calibration intervals can be obtained by 

inverting the simultaneous tolerance intervals constructed for the regression (calibration) 

function. 
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1. Introduction 

In many experimental sciences, acquisition of the measurement results frequently requires 

measurement procedures involving instrument calibration which can be modeled as linear 

(polynomial) regression problem. Then, the required measurement result, say xx, is obtained 

through measuring the observable response variable, say yy, and by inverting the fitted 

regression (calibration) function. Here we consider a problem of constructing and computing 

the appropriate (exact according to the definition given bellow) confidence intervals for the 

unobservable values of the explanatory variable xx, based on given fitted calibration function 

(a result of the calibration experiment), for possibly unlimited sequence of future observations 

of the response variable yy (which are assumed to be independent of the calibration experiment 

and based on the assumption that the considered regression model was correctly specified).  

As proposed by Scheffé (1973), such calibration intervals for xx values can be obtained from 

simultaneous tolerance intervals for the considered regression (calibration) function, with 

warranted minimum (1 ¡ °)(1 ¡ °)‐content for all such intervals simultaneously, and with 

confidence at least (1 ¡ ®)(1 ¡ ®), for selected small probabilities °° and ®®. The interpretation of this 

requirement is that such simultaneous tolerance intervals will cover at minimum 

(1¡ °)£ 100%(1¡ °)£ 100% content of all values yy from the same (unknown) population and this will be 

true in more than (1¡ ®)£ 100%(1¡ ®)£ 100% of hypothetical calibration experiments.  

However, the known simultaneous tolerance intervals in regression are typically conservative 

in that the actual confidence level exceeds the required nominal level (1 ¡ ®)(1 ¡ ®), and as such are 

generally broader than they necessarily should be. For a brief overview of the methods for 

simultaneous tolerance intervals in linear regression and suggested improvements see e.g. 

Chvosteková (2013). For more details on tolerance intervals see Mathew and Krishnamoorthy 

(2009).  

The exceptions leading to narrower intervals are the simultaneous tolerance intervals as 

proposed by Mee et al. (1991) and Mathew and Zha (1997), however, they are based on 

slightly changed requirements. That is, the warranted properties of such simultaneous 

tolerance intervals are either valid on restricted range only, i.e. on a given and fixed interval 

x 2 (xmin; xmax)x 2 (xmin; xmax), and/or the requirement of warranted minimum content (1 ¡ °)(1 ¡ °) for all 
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intervals is changed by the requirement that the average content is warranted to be (1 ¡ °)(1 ¡ °), for 

more detailed discussion see e.g. Mee and Eberhardt (1996). Moreover, the suggested 

methods and algorithms for computing such tolerance intervals seem to be too complicated for 

practical purposes. 

2. Subject and Methods 

We shall assume that the calibration experiment, say EE, is modeled by the linear regression 

model y =X¯+ "y =X¯+ ", where yy is nn‐dimensional vector of responses measured for nn values xixi, 

i = 1; : : : ; ni = 1; : : : ; n, of the explanatory variable x 2X µRqx 2X µRq. However, here we shall assume that the 

explanatory variable is one‐dimensional, i.e. that x 2 (xmin; xmax) µ Rx 2 (xmin; xmax) µ R. Further, the matrix 

XX represents the n£ (p+ 1)n£ (p+ 1)‐dimensional calibration experiment design matrix with rows 

f (xi)
0f (xi)
0 for i = 1; : : : ; ni = 1; : : : ; n, i.e. (p + 1)(p + 1)‐dimensional functions of xixi. ¯̄  is the (p + 1)(p + 1)‐dimensional 

vector of regression coefficients and "" is nn‐dimensional vector of (homoscedastic) 

measurement errors with its assumed distribution " »N(0; ¾2In)" »N(0; ¾2In).  

For example, in simple pp‐order polynomial linear regression model we get 

f(xi) = (1; xi; x
2
i ; : : : ; x

p
i )
0f(xi) = (1; xi; x

2
i ; : : : ; x

p
i )
0 for xi 2 X = (xmin; xmax)xi 2 X = (xmin; xmax). Based on the calibration experiment EE 

we get the best linear unbiased estimator (the least squares estimator) of the calibration 

function X ^̄ =X(X0X)¡X0yX ^̄ =X(X0X)¡X0y and the estimator of the measurement error variance 

S2 = 1
º
(y¡X ^̄)0(y¡X ^̄)S2 = 1

º
(y¡X ^̄)0(y¡X ^̄), with mutually independent distributions of the variables 

^̄¡¯

¾2 » N (0; (X 0X)¡)
^̄¡¯

¾2 » N (0; (X 0X)¡) and S
2

¾2 »
1
º
Â2
º

S2

¾2 »
1
º
Â2
º, where º = n¡ (p+ 1)º = n¡ (p+ 1).  

In the first step, given the results of the calibration experiment EE, we shall construct the 

simultaneous tolerance intervals for all possible future realizations of the response variable 

Y (x) = f(x)0¯ + ¾ZY (x) = f(x)0¯ + ¾Z  (where x 2 Xx 2 X and Z » N (0; 1)Z » N (0; 1) is independent of the calibration 

experiment EE), say (Lx;E ; Ux;E )(Lx;E ; Ux;E ), and such that  

 PrfEg

³
PrfY (x)g

³
Lx;E · Y (x) · Ux;E j E

´
¸ 1¡ °; for all x 2 X

´
= 1¡ ®:PrfEg

³
PrfY (x)g

³
Lx;E · Y (x) · Ux;E j E

´
¸ 1¡ °; for all x 2 X

´
= 1¡ ®: (1) 

The two‐sided simultaneous tolerance intervals, (Lx;E ; Ux;E )(Lx;E ; Ux;E ), are typically given in the form 

 Lx;E = f(x)0 ^̄¡ k(x)
p
S2; Ux;E = f(x)0 ^̄ + k(x)

p
S2;Lx;E = f(x)0 ^̄¡ k(x)

p
S2; Ux;E = f(x)0 ^̄ + k(x)

p
S2; (2) 

where by k(x)k(x) we denote the required tolerance factors evaluated at x 2 Xx 2 X.  

In the second step, for given observation Y¤ = Y (x¤)Y¤ = Y (x¤), we shall construct the calibration 

confidence interval for the unobservable value of the explanatory variable, say x¤ 2Xx¤ 2X , by 

inverting the simultaneous tolerance intervals. So, the calibration confidence interval is given 

by the random set 

 S (Y¤; E) = fx 2 X : Y¤ 2 (Lx;E ; Ux;E)g:S (Y¤; E) = fx 2 X : Y¤ 2 (Lx;E ; Ux;E)g: (3) 

Notice, that the set (3) is not necessarily an interval. However, for most practical situations 

where the calibration function is (significantly) strictly monotonic, the confidence set (3) 

typically results in an interval. Based on (1) and (3)  we directly get basic probability property 

of the calibration confidence intervals: 

 PrfEg

³
PrfY (x¤)g

³
x¤ 2 S (Y (x¤);E) j E

´
¸ 1¡ °

´
= 1¡ ®:PrfEg

³
PrfY (x¤)g

³
x¤ 2 S (Y (x¤);E) j E

´
¸ 1¡ °

´
= 1¡ ®: (4) 
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3. Results 

Here, we propose to consider a new method for computing the tolerance factors of the 

simultaneous tolerance intervals in linear regression by a straightforward generalization of the 

method for computing the tolerance factors for simultaneous tolerance intervals for mm 

independent normal populations.  

For given parameters dxdx, ºº and mm, let kx = k(dx; º;m)kx = k(dx; º;m) be a solution to the following integral 

equation  

 2m

Z 1

0

PrfQºg

µ

Qº ¸
ºÂ2

1;1¡° (dxz
2)

k2
x

¶

(2©(z)¡ 1)
m¡1

Á(z) dz = 1¡ ®;2m

Z 1

0

PrfQºg

µ

Qº ¸
ºÂ2

1;1¡° (dxz
2)

k2
x

¶

(2©(z)¡ 1)
m¡1

Á(z) dz = 1¡ ®; (5) 

where dx = f(x)0(X 0X)¡f(x)dx = f(x)0(X 0X)¡f(x) is the scale parameter at location x 2 Xx 2 X, ºº represents the 

degrees of freedom used in estimation of the measurement error variance, and m ¸ 1m ¸ 1 

represents the parameter of simultaneosity, i.e. the number of independent normal populations 

for which the simultaneous tolerance intervals are to be constructed. Notice that for m = 1m = 1 the 

tolerance factors given by (5) define the non‐simultaneous tolerance intervals. 

Further, ©(¢)©(¢) denotes the CDF and Á(¢)Á(¢) the PDF of the standard normal distribution, and 

Qº »
1
º
Â2
ºQº »

1
º
Â2
º is a chi‐square distributed random variable with º = n¡ qº = n¡ q degrees of freedom (nn 

denotes the sample size of the calibration experiment and qq  denotes the rank of the linear 

regression model design matrix XX used for calibration). The probability 1¡®1¡® is the required 

nominal confidence level and Â2
1;1¡°(±

2)Â2
1;1¡°(±

2) denotes the (1¡°)(1¡°)‐quantile of the non‐central 

chi‐squared distribution with 11 degree of freedom and the non‐centrality parameter ±± (1¡ °1¡ ° is 

the required coverage/content of the tolerance interval).  

For more details on derivation of the equation (5) see Mathew and Krishnamoorthy (2009), 

and their equations (1.2.3), (1.2.4), (2.5.7) and (2.5.8).  

The suggested form of the proposed tolerance factors is ~kx = k(dx; º; ~m)~kx = k(dx; º; ~m), where ~m~m denotes the 

appropriate value of the simultaneousity parameter, i.e. such value of ~m¸ 1~m¸ 1 (minimal 

possible) that the following criterion is fulfilled 

PrfB;Qºg

µ

min
x2X

n
©
³
f(x)0B + ~kx

p
Qº

´
¡©

³
f(x)0B ¡ ~kx

p
Qº

´o
¸ 1¡ °

¶

= 1¡ ®:PrfB;Qºg

µ

min
x2X

n
©
³
f(x)0B + ~kx

p
Qº

´
¡©

³
f(x)0B ¡ ~kx

p
Qº

´o
¸ 1¡ °

¶

= 1¡ ®:  

(6) 

Here B »N(0; (X0X)¡)B »N(0; (X0X)¡) and Qº »
1
º
Â2
ºQº »

1
º
Â2
º are independent random variables (which 

represent/model the variability of estimated parameters resulted from all hypothetical 

calibration experiments), and XX  denotes the set of all potential values of the explanatory 

variable xx in a possibly infinite sequence of future independent observations 

Y (x) = f(x)0¯+¾ZY (x) = f(x)0¯+¾Z, Z »N(0;1)Z »N(0;1), with dx = f(x)0(X0X)¡f(x)dx = f(x)0(X0X)¡f(x). 

In linear regression model with p = 1p = 1 we get f(x)0¯ = (1; x)(¯1; ¯2)
0 = ¯1 +¯2xf(x)0¯ = (1; x)(¯1; ¯2)
0 = ¯1 +¯2x, with order 

p = 3p = 3 we get f(x)0¯ = (1; x; x2; x3)(¯1; ¯2; ¯3; ¯4)
0 = ¯1 + ¯2x+ ¯3x

2 + ¯4x
3f(x)0¯ = (1; x; x2; x3)(¯1; ¯2; ¯3; ¯4)

0 = ¯1 + ¯2x+ ¯3x
2 + ¯4x

3. 

Notice that here ~m~m can be any real number such that ~m¸ 1~m¸ 1. The parameter ~m~m represents the 

complexity of the regression function f(x)0¯f(x)0¯ over the considered range x 2Xx 2X . ~m~m depends on 

the on the design of the calibration experiment EE : the polynomial order pp , the considered set 

XX , the design matrix XX, and the degrees of freedom ºº . For example, in simple linear 

regression (polynomial of the order p = 1p = 1) the value ~m = 2~m = 2 is a good starting point for 
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numerical (iterative) search procedure (i.e. the complexity of the simple linear regression 

function for all x 2Xx 2X  is similar to the complexity of two independent normal populations). 

We have developed the MATLAB algorithm for efficient computation of the tolerance factors 

as defined by the integral equation (5).  

An earlier version of the algorithm is available at the web page http://www.mathworks.com/ 

matlabcentral/fileexchange/24135‐tolerancefactor. The implementation of the algorithm 

suitable also for computing the tolerance factors as defined by the equations (5) and (6) and 

the related calibration confidence intervals (3) is currently under development and will be 

available on request from the author. 

4. Discussion 

The new method for simultaneous tolerance intervals in linear regression was compared for 

several special situations with the methods for constructing simultaneous tolerance intervals 

as proposed by Mee et al (1991) and by Chvosteková (2013). Based on such preliminary 

studies, the new intervals lead to narrower simultaneous tolerance intervals with guaranteed 

minimum coverage (1 ¡ °)(1 ¡ °) and the exact confidence level (1 ¡ ®)(1 ¡ ®). 
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