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Abstract. We have derived several models for the pulse transient methods which accounted 
for effect of heat losses from the sample surface as well as the geometrical arrangement of a 
real experiment. The models were derived for cylindrical as well as cuboid shape of 
specimens [1], [2]. In the past there was published an uncertainty analysis of the models for 
cuboid samples. In this paper the same analysis was extended for infinitively long cylindrical 
specimen. The analysis was developed using the theory of sensitivity coefficients. A 
theoretical calculation of the model parameters uncertainties and derived analytical formulas 
are presented. Analysis of the measurement error on the base of sensitivity coefficients show 
propagation of input uncertainty into calculated parameters. Analysed results shows 
limitations relating to a range of model validity for of non-stochastic dynamic process. The 
analysis improves the accuracy of the measurements.  
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1. Introduction 

The experimental problems connected with geometry of specimens are sometimes the results 
of having limited size of the tested material. This could cause some problems in data 
evaluation, because the ideal model most often assumes infinitively large media. Typically, 
the shapes of the specimens used for the measurement are of cylindrical or cuboid forms. The 
limited amount of the specimen causes an additional effect that decreases the accuracy of the 
measurement. The contributions to uncertainty come from additional effects caused by the 
differences between the ideal and the real size of the sample. The main effect is caused by the 
heat losses from the sample surface and it is included in model.  

2. The principle of the Pulse transient method and the model for cylindrical samples of 
infinite length 

The Pulse Transient method [3] is a dynamic method for the measurement of thermophysical 
parameters. The principle is based on the measurement of the temperature response to a heat 
pulse generated by a planar heat source generated. Temperature response is recorded by the 
thermocouple placed apart from the heat source (Fig. 1). Heat losses effect included in this 
model is represented by heat transfer coefficient  from the sample surface to the 
surrounding. Thus, the planar isotherms on Fig. 1 of the heat front are deformed during the 
measurement. The data that are measured within the marked white area in Fig. 1. are still able 
to be evaluated by the ideal model. In the case when the thermal isotherms are deformed by 
this effect we need to introduce new models. The solution of the heat transfer equation for the 
initial and boundary conditions shown in Fig. 2 is 
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model, x axial space coordinate, r radial space coordinate. In this case the thermocouple is 
placed on the axis so the value of r=0. R is the radius of the sample, q heat flow density,  
thermal conductivity,  thermal diffusivity,  heat transfer coefficient for sample–ambient 
interface, *(u) is the complementary error function,   is the root of equation 

0)()( 10   JJ  and  J0 and J1 are the Bessel functions. 
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Fig. 1. Wiring diagram and the sample set in a cut. In between first and second part of a sample set a planar 
heat source is inserted. The thermocouple for the measurement of temperature response to the heat 
pulse is inserted in between the second and the third part.  
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Fig. 2. Initial and boundary conditions for the model assuming two semi-infinite cylindrical specimens and 
circle shaped heat source in between them. 

3. Accuracy estimation results 

Generally, uncertainty has different sources and includes errors in the data measurements, 
parameter estimation procedure and model structures. The uncertainty analysis evaluates how 
these errors are propagated through the model and calculates their relative importance which 
is quantified via sensitivity analysis. This type of uncertainty should be supposed as a 
systematic error of the model. The analysis uses the sensitivity coefficients data derived from 
the model, along with the underlying data covariance to assess the degree of similarity (linear 
dependence) between sensitivity coefficients [4] calculated for free parameters. If the 
sensitivity coefficients are linearly dependent on each other, the parameters could not be 
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estimated unambiguously and thus their uncertainty is high [4]. The general mathematical 
background for different shape of samples was already published [1], [2]. The final formula 
for relative uncertainty of a model parameter ak has the form 
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where ur is the relative uncertainty, ak the tested parameter, Ckt is the coefficient that 
represents the projection of the temperature uncertainty to the uncertainty of the tested 
parameter [4]. The normalized sensitivity coefficients iiia afa  for the discussed models 

were calculated for the values of thermophysical parameters close to those measured in 
experiment performed on sandstone [2]. 
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Fig. 3. Uncertainty analysis for sample thickness of 10mm at 2, 4 and 6 seconds of pulse width and thickness 

20mm for 8, 16 and 24 seconds of pulse duration. For the illustration of time relation the maximum of 
temperature response T(t) drawn in blue and red solid lines at 0.5 of the dimensionless time F (Fourier 
number), that correspond to 42 seconds in real time. Uncertainties in measurement of temperature are 
propagated through the model and their relative importance is evaluated as uncertainty in K-1 for. 

Relative uncertainty Uj is defined by   ))(( TuaauU jjjj   given in K-1 where u(T) is uncertainty 

of measurement of temperature response. 

4. Discussion 

The sensitivity coefficients for thermal diffusivity and thermal conductivity are of very 
similar behaviour like in the case of cuboid samples [2] and have a maximum at the lower 
times of the temperature response record. The values of the sensitivity coefficient of heat 
transfer coefficient are increasing in time, so higher sensitivities are expected at longer 
measurement times. This concludes that for the evaluation of the feasible data from this 
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model we need to perform measurements long enough exceeding times more than 3F. This is 
confirmed by the uncertainty analysis where the lowest uncertainties are for the dimensionless 
times evaluated as Fourier number higher than 1.5. For F=3 the uncertainty is 3.55 and for 
F=4 the uncertainty is 2.4 K-1. The sensitivity analysis in Fig. 3 shows the acceptable error of 
parameters evaluation for thermal diffusivity and thermal conductivity also for times lower 
than 1 F. The heat transfer coefficient uncertainty decrease with increasing time of 
measurement. The uncertainties in Fig. 3 are calculated as uncertainties in respect to input 
uncertainty of measured temperature. The typical value of temperature uncertainty u(T) 
measured by a thermocouple is about 0.01K. For the evaluation of percentage relative 
uncertainty we can recalculate uncertainty in the following way %100*)(% TuUU j . 

5. Conclusions 

The uncertainty analysis of the pulse transient model for cylindrical samples of infinite length 
in respect to the heat transfer coefficient was performed and illustrated in the Fig. 3. The 
accuracy of the results depends on the uncertainty of measured temperature response and in 
the presence of the effect of the heat losses from the sample free surface depend on the time 
of the measurement as well as geometry of the specimen. This parameter is affecting the 
measurement with increasing time of the measurement at larger thicknesses of the sample. 
The ideal model overestimates values of thermophysical parameters more than ten percent. 
The heat transfer coefficient is not possible to estimate unambiguously for short times of the 
measurement because of low sensitivity. The heat transfer coefficient from the sample surface 
to the surrounding is temperature dependent [4]. The described method of uncertainty analysis 
is applicable to any kind of the physical model. 
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