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Abstract. The measurement signals of the quadrature homodyne irderéters (say x and
y, usually called Sine/Cosine signals and/or quadratureaig) typically exhibit offsets, un-
equal amplitudes and a phase difference that is not ex@€tlyegree as would be expected in
the ideal/theoretical case. Moreover, frequently thera isignificant component of the mea-
surement noise which is common to both signals (caused,by.ghe amplitude noise of the
laser), and as such, it results in a non vanishing correlatid the measured signals. Here we
present a method for estimation of the unknown correlaticeffenent from the observed data
and suggest its implementation into the algorithm for deuntattbn and evaluation of the am-
plitude noise related uncertainty contribution of correld quadrature interferometer signals,
originally proposed by Kéning, Wimmer and Witkovsky 2hfpr uncorrelated interferometer
signals.
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1. Introduction

In order to demodulate the observed homodyne interferagoals an ellipse is fitted to both
signals x andy, simultaneously. This procedure was originally proposg#ibydeman 1] and

Is therefore known as Heydeman Correction (HC). The estingtgrde parameters are used
for demodulation of the quadrature interferometer sigaats also for derivation of the associ-
ated uncertainties of the interferometric phase valuegamiisplacements (the parameters of
primary interest in dimensional metrology), for more distsee e.g.1, 7]. In [2], we have
suggested an iterative algorithm based on linearizatioth@foriginally nonlinear model (in
fact the linear regression model wittonlinear constraints on its parameters). The nonlinear
model is approximated locally by a linear regression mod#t \inear constraints of type II,
as suggested by Kubék in [5], pp. 146 and 152. This allows to derive tleeally best linear
unbiased estimators (BLUES) of the model (ellipse) pararagtes well as derivation of the
(approximate) covariance matrix of the estimators. Uskmig $olution the required interfero-
metric phase values follow fron2), and their uncertainties can be obtained in a straighticdw
way by the law of propagation of uncertainty. The processn&drization/estimation can be
iterated, until an adequately chosen convergence crhitésiceached.

Originally, this method was suggested and derived for wetated interferometer signals.
However, as it was already mentioned, a component of the urgagnt noise common to
both signals leads to (sometimes strongly) correlated areagent signals. So, ir8] we have
modified the algorithm and presented a MATLAB implementa(@l | i pseFi t 4HC) which
allows fitting also correlated interferometer signalsuassg that the correlation parameter is
known in advance.
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In situations when the number of measurements is suffigidgttie, a simple analytic ex-
pression for the statistical uncertainty of the phase wawetin [4]. This allows to iden-
tify a practical limit of optical quadrature displacememterferometry, which already has been
reached experimentally.

Mathematically, the (noiseless) output signals can berdestas

X(¢) = ap+ aicos
y(¢) = Bo+PBisin(¢ + o), 1)

where¢ is the phase (the parameter of a primary intereg)and 3o denote the coordinates
of the ellipse center (the offsets); andp; are the signal amplitudes, ardt/2 < ¢o < 11/2

is the phase offset. Under these circumstances, givenubevaues of the ellipse parameters,
ao, Bo, a1, B1, Po, and the particular signal valuesandy (lying on this specific ellipse), the
required interferometric phageis determined by using the relation

a1(y—Bo) — Bu(x— ao) singo
= arctan : 2
¢ Bl(X— ao) COS¢0 ( )
However, real applications have to use noisy experimerat (@;,y;), i = 1,...,n. So it

is a problem of fitting an ellipse to data by minimizis®&3d) = 31, [xi — (ao+ ay.cosg;))? +

Vi — (Bo+ Brsin(¢i + ¢o))]%. The procedure requires a minimization in the- 5)-dimensional
parameter space, with the paramet@rs- (ao, Bo, a1, B1, $o, P1,...,Pn). This is predictably
cumbersome for relatively large(a typical case for the interferometric measurements),eso w
shall rely on our approximation method. Here we focus maamyhe problem how to estimate
the unknown correlation coefficient from the observed data.

2. Subject and Methods
We consider the following measurement model for the comelauadrature output signals
(Xiayi)1 I - 17"'7n!

Xi - I«li + £X,i7
Yi = Vi + &y, (3)

with the following set of nonlinear restrictions on the mbparameters,
P2 +Bv2+Clvi +Dpi + Fvi+G =0, i=1,...,n, (4)

whereB,C, D, F, G represent the algebraic ellipse parameters. Notice thatllipse parameters
B,C,D,F,G only appear in the restrictions. They are uniquely relatethé geometric ellipse
parametersig, Bo, a1, B1, $o, for more details se€?]. In a matrix notation we get

r\ (H Ex Ex o I pI
B) =) @) ) (E)=(or 7)) ©
withz = (X1,....%) ", y=(Y1,--..¥n) , U= (U1,..., Un)', V=(V1,...,Vn)’, &x= (&1, -- -, &n)’,

&y = (&1,--.,&n), such thaty ~ N(o,0%I) andey ~ N(o0,0%I) (possibly correlated, with
corr(&, &) = p, i =1,...,n), and with nonlinear restriction on the model parameterthef

form BO+b=o,whereB = [v2iuvipivii], 0= (B,C,D,F,G), b= 2, p?=(y?,...,u2),

vZ=(vZ...,v3), uv = (a1, ..., taVn), and1 = (1,...,1), 0 = (0,...,0)". Here,[uiv] de-
notes the concatenation of the vectarandv to a matrix.
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We shall linearize the nonlinear system of restrictidB$,+ b = o, by the first-order Taylor
expansion aboyt, Vo, andfo,

BO+b ~ Ag (I"}li)-l—BoeA-i—co, (6)

where

Ay = {Diag({ofvofliofo} 90+2u0) : Diag({Zvofuofoilfo] 90)} ,
= H—Hg, Va=V —Vo,
By = [V%Euovoiuoivoh},
6 — 60, bo = 5, co = BoBo-+bo and 6o = (Bo,Co, Do, Fo, Go) - (7)

Thus, we get the (approximate) linear regression model iméar constraints,

(o) N (i) ) 1 40 () # Botat oo ®
7 Va Va

wherexa = x — Ug, ya = y — Vo, Ao, Bo, andcg are given by ), and H is the correlation
matrix of the measurement errdis, £y)’, here

On,n In,n

H =0°Ionon+0
2n,2n (In,n Onn

) = 0%V 4 6V3 9)

with & = 0p. This model serves as a first-order approximation to theineat model 8)—(4).
Hence, the (locally) best linear unbiased estimators (BhWE&He model parameters and their
covariance matrix can be estimated by a method suggest&f] fof more details see als@j

’:‘A) HAQ I-HA A
o _ 0 11,0) ( - 0@110 o) (wA) 10
éi ( Qo )°° i —Q210A0 yn)’ (10)

whereQ110 andQ21 are blocks of the matrik)o defined by

~1
Q110 Q12 o> (AOH Ap Bo)
= 0) = , 11
Qo (Qzl,o Q220 Bj 0 (11)
together with its covariance matrix
ﬁA / /
- H—-HA\Q110AcH —HA Q120
Cov (v > = ( 0= -5 0220 ). 12
éi —Q210A0H Q220 (12)

Then, the estimators of the original parametgrsy, and6 are given byji = i, + U, V=
OA—i-Vo, 6 = 6, + Oo.

Let 0, & be selected appropriate initial valuesat andd. Now, we shall derive the esti-
mator(og, &)-MINQUE, i.e. the(a?, &)-locally minimum norm quadratic unbiased estimator
of g2, &, which is optimum in the class of quadratic estimators ofarere components. For
more details seed], Chapter 5.2, pp. 93-99.
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For his purpose, first we shall create the 2 matrix.S, where
{S}i,; = Trace[ApQ110A0ViAxQ11040Vi], i,j€{1,2}, (13)

andQ110 is a block of matrixQo defined by (1) with using H = Hg = ang + & Va. Then,
the(og, &)-MINQUE of the variance components® and? is given by

ra 2\ -1 -1 LN o
@)oo (G D () )
0 A\ . ’
(o) -7) marver ((G2) -7)

V= (Ion2n— HoApQ110A0) (iﬁ) — HoApQ110¢0. (15)

The process can be iterated until convergence is reachedsh@édd start with appropriate

valuesuéo), v(()o), 6(()0), ag, J(0)- Such we obtain the (locally) BLUESs of the parameters, 6

and the (iterated) MINQUESs with their estimated covariamzgrices.

where

3. Discussion

In this paper we have derived (and suggested to use) thefptim of the (iterated) MINQUE
estimator for estimation of the unknown correlation coéfit of the interferometer signaiks
andy. This helps to improve the previously suggested algoritbndemodulation and uncer-
tainty evaluation of correlated quadrature interferomsignals.
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