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Abstract. The article investigates the theoretical aspects of the positioning accuracy of parallel 

kinematic structures (PKS), especially the accuracy of the Tricept type PKS. Unlike serially 

configured structures utilizing translating and rotating movement, parallel kinematic structures 

consist of telescopic drives that are joined by a solid platform. The functional relationship 

between the actuators and the resulting position coordinates is rather complex, because of the 

configuration of the kinematic system. The article provides a framework to analyze the influence 

of geometrical imperfections in the system using the law of uncertainties propagation, in order 

to determine the accuracy of the end effector. The approach may aid the design process of 

parallel kinematic structures by providing information on the theoretically achievable effector 

positioning accuracy. 
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1. Introduction 

Parallel kinematic structures (PKS) represent a non-

conventional way for arrangement of movement elements, 

comparing to the widely used serial kinematic structures. 

They employ parallel arranged movement elements 

(telescopic rods, arms) that have one end located at a base 

frame and the second end is connected to a movable platform. 

Tricept belongs among the most known PKS [1]. It is a fixed 

platform connected with a movable platform via three driving 

telescopic rods and a not-driven central rod (see Fig. 1). 

Central rod is connected to a movable platform by a solid 

linkage; while it can move axially against the fixed platform 

(rotation of the central rod is prevented). Effector is usually 

connected to a movable platform, carrying the tools or 

technological heads.  

 

 
Servomotor located at the end of each telescopic rod 

enables extension of the rod by a ball screw and nuts. 

The skeleton together with a primary platform create a 

single kinematic element [1 to 3]. 

 
Fig. 1. Schematic representation of 

telescopic rods, joints and 

platforms 

2. Influences that Affect Reaching of the Desired Position 

Positioning accuracy of any manufacturing device represents the closeness between the actual 

reached position of the end effector and a programmed position, specified by the control system. 

For PKS, effector’s endpoint is the point at the end of the central rod, respectively it is precisely 

defined point on the tool or technology head. In our case, the point P' is considered. 
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Based on theoretical analysis, one can summarize three types of errors affecting reaching of the 

desired position by PKS effector. The geometrical errors arise due to inaccuracies in 

manufacturing, inaccurate relative position of individual elements or due to wear of joints. The 

stiffness errors originate from elasticity of joints among individual elements as well as from 

flexures caused by own weights of individual elements or by an external load. Their magnitudes 

depend on the actual position of the effector. The thermal errors arise from thermal stress and 

dilatation of elements due to heat generated by internal or external sources, e.g. motors, 

bearings, etc. [2, 3]. 

3. Methodology for Determination of the Desired Position  

If the device designer knows the theoretically achievable positioning accuracy, he has an 

important opportunity to influence critical pieces of equipment in the process of construction 

work. Uncertainties balance will help to identify the most significant influences on theoretically 

achievable positioning accuracy of the effector, which opens up the possibility of corrective 

interventions into the structure. Only geometrical influences on the overall uncertainty are 

considered in the paper.  

Cartesian positions Q =[Qx, Qy, Qz] of point Qq ( relative to "static" coordinate system bound 

with static platform (relative to point P), when (in general) angles α,  and shift z are nonzero) 

we obtain by applying transformations. 

Matrix notation of transformation is q+ze3Q = Oy()  Ox()  (q + ze3) that can be itemized as 

   (1) 

We can find their appropriate linear combinations to get the simplest relations equivalent to the 

relations of telescopic rods lengths. Three equations can be obtained in this way 

   (2) 

   (3) 

   (4) 

Let us denote the left sides of equations (2) to (4) as functions L1, L2, L3 that depend on 

parameters A0, A1, A-1, , , z, r, R. We will consider the movement of the point Q in time t that 

will be limitedly close to 0 and parameters A0, A1, A-1, , , z, r, R will depend on time t as well. 

If partial derivation of left sides of equations (2) to (4) following equation is obtained 

 0WWWMW   1553155333   (5) 

where  
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Matrix M35 we express by the relation (5): 

 53

1

3353 



  WWM   (6) 

When multiplying the equation (1) from left by matrix )(T

yO  and adjustment we get  
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Left sides (7) is matrix H . Let 
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Matrix 53A  from (8) is used for calculation of estimates of uncertainties of indirectly measured. 

Covariance matrix of those estimates is  

 Uy = AUxA
T   (9) 

where matrix Ux is diagonal a known covariance matrix of the random vector x = (x1, x2, x3, x4, 

x5) = (A0, A1, A-1, r, R), where 
ixu is standard uncertainty of the estimate xi of quantity Xi, i = 1, 

2, … 5, 
jixu

,
is covariance among estimates xi and xj, i = 1, 2, .., 5, j = 1, 2, .., 5. Uncertainty of 

position of any point Q in the workspace can be calculated, if the matrix Ux is known.  

Let Ux be a known constant symmetric matrix of 55 type, and Uy be an unknown symmetric 

matrix of 33 type that we want to determine and is given by (9). It is clear that the matrix Uy 

is correlated to the position of the point Q[Qx, Qy, Qz]. We want to find the intervals for values 

of the matrix Uy, when considering that Qx, Qy, Qz may take any value, depending on how the 

reference point Q moves in some regular subspace (let it be a cube for purposes of this estimate, 

see Fig. 7) of the overall workspace. 

If we fix the angles  and , the virtual beam arises in cube, along which the reference point 

will move. It is sufficient to evaluate the expression for a particular beam only in the roots of this 

polynomial (if they overlap with workspace) and also in the endpoints of the beam, defined by 

the workspace borders. Among them we find the minimum and maximum, which will form the 

search interval for the selected element of matrix Uy, for fixed angles  and  and a base matrix Ux. 

Impact of each element of the matrix Ux can be displayed using a three-dimensional function 

(see Fig. 2 until Fig. 6). Search estimate of the matrix Uy is obtained as a matrix of ordered pairs 

(minimum and maximum impacts of components of the matrix Ux).  

Using the software system MATHEMATICA, we created a program to search the entire work- 

space (or its subset thereof) and to estimate the matrix Uy. To do so, the matrix Ux must be 

specified and the required division of the workspace must be selected. 

For example, for matrix  
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Fig. 2. Influence of element 

Ux[1,4] on maximum 

value of the matrix 

Uy[1,1] 

 Fig. 3. Influence of element 

Ux[5,5] on maximum 

value of the matrix 

Uy[1,1] 

 Fig. 4. Influence of element 

Ux[4,4] on minimum 

value of the matrix 

Uy[1,2] 

 

 

 

 

 

Fig. 5. Influence of element 

Ux[5,5] on minimum 

value of the matrix 

Uy[3,3] 

 Fig. 6. Influence of element 

Ux[4,4] on minimum 

value of the matrix 

Uy[2,2] 

 Fig. 7. Scheme of the cube that 

represents the biggest 

regular object in the 

workspace 

4. Conclusions 

This paper analyzed various issues related to the control of structures with parallel kinematics, 

especially that relating to the accuracy of positioning. The function describing the lengthening 

and shortening of the individual telescopic drives and the desired setpoint is non-linear. Because 

of this, the equations cannot be partially derived, making the uncertainty analysis unfeasible. In 

order to overcome this difficulty, the employment of an approach using infinite geometrical 

changes in the parameters is suggested. The limit variables for uncertainties were calculated 

here, suggesting that the achievable positioning accuracy is not constant for all setpoints within 

the workspace of the Tricept device. 
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