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General scheme for estimation of errors and uncertainties is presented and discussed.
Allan variance as an important characteristic of data scatter is compared with classic
sample variance. Two approaches are outlined for investigation of Allan variance ver-
sus sample variance. The first one is based on the testing of statistical hypotheses, the
second one is based on the functional representations of time series.

1. Introduction
Together with tendency to unification of errors and uncertainties estimation, there is also

an urgent necessity to extend the set of errors estimates. The latter tendency is clearly con-
firmed by the expanded use of Allan variance [1] as an estimate of data scatter.

Thus it is essential to compare various estimates of errors (uncertainties) on the basis of
different data models, including statistical and functional representations. In this report a gen-
eral scheme is outlined, and Allan variance is compared with classic sample variance.

2. General approach
Nowadays in practice the most popular characteristic of data scatter (for the experimen-

tal data x1, …,xn  ) is the classic sample variance:

;)1/()( 22 −−=∑ nxxS k      ∑= nxx k / . (1)

It is the best estimate of the variance in the classic case of random sample with constant
mean and variance σ2 under Gaussian distribution, but in other cases one can use some other
estimates for the data errors or uncertainties. However, the choice of a proper estimate is not
very obvious.

In general, the estimation of error (uncertainty) is a multi-stage procedure [2], which is
realised as follows.

1. Selection or determination of the basic model of the error (for instance, random vari-
able, time series, fuzzy set, interval function).

2. Definition of the error characteristic as a scale parameter within the scope of the
fixed model.

3. Determination of the estimate for the fixed parameter, which could be applied to the
experimental data obtained in measurement.

4. Calculation of the estimate according the chosen formula.
So in the classic case the model of error is a random variable, the parameter (character-

istic) is variance, and the estimate is sample variance (1). If one fixes the model of random
variable and the variance as parameter, it is possible to use some other estimates of variance,
for instance: truncated sample variance S2(α); median absolute deviation S2

m;
mean absolute deviation S2

d  ; quartile deviation estimate S2
q [3].

But one can also choose other parameters of random variable distribution, for instance:
mean (absolute) deviation; quartile deviation; median deviation. The estimates of the parame-
ters may be taken either those mentioned above, or some more complicate ones.
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This simple scheme clearly illustrates the vast set of the parameters, which may be used
as error characteristics, and the vast manifold of the estimates for these parameters. Neverthe-
less, the sample variance is still the most popular one.

But lately another scatter characteristic was proposed - Allan variance [ 1 ], evaluated as
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Allan variance proved to be very useful in many measurement problems. Nowadays it is
widely used for data processing in measurements, especially in case of flicker or 1/f type
noise. It is highly important in the measurements of time and frequency [ 4 ].

However, Allan variance is usually introduced as just an empirical value. In this paper
two ways are proposed for the formalisation of Allan variance as an important scatter charac-
teristic of data. Allan variance is also compared with classic sample variance for revealing the
scope of each estimate.

3. Statistical approach
The first approach is based on the testing of statistical hypotheses. It should be noted that

the ratio of Allan variance to the sample variance was used as a test statistic in the classic
mean square difference test [ 5 ]:

r =  σσσσ2
a / S2 .

Here null hypothesis H0 is that x1, …,xn   is a random sample with constant mean, Dxk =

σ2:

H0:   E xk  = c.
It could be tested against various alternatives. Usually this test is used in metrology to re-

veal a systematic shift in data, so the alternative is the following:

H1:   E xk+1  = E xk  + h .
The properties of the ratio r are analysed under hypothesis H0. If x1, …,xn   is a random

sample with Gaussian distribution, there are formulas:

E {r } = 1, D { r } = (n+2)-1 + O ( n-3).
Moreover, statistic (r-1) [(n2-1)/(n-2)]1/2 is asymptotically standard Gaussian variable.

The critical region is as follows:

D(αααα) = { r < rmin(n, αααα) },
and in this case hypothesis H0 is rejected (so systematic errors are present).
The critical value rmin(n, α) for n > 60 is evaluated by the formula

rmin(n, α) = 1 + zα / [ n+ (1+ zα
2)/2]1/2,

where zα - α-quantile of standard Gaussian distribution.

But some other alternative hypothesis may be also considered, first of all - the time series
with non-correlated increments:

H2:    xk+1  =  xk  + zk .

where zk  - increments with variance Dzk = σσσσ0
2, or innovation series for xk .

The properties of the ratio  r under hypotheses stated may be used for comparing the
fields of application of two characteristics, Allan variance and sample variance. In particular,
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Allan variance σσσσ2
a is the best estimate of the increment variance σσσσ0

2 under hypothesis H2,
whereas sample variance S2 is the best estimate of variance σσσσ2 under hypothesis H0.

4. Hilbert space approach
The second approach is based on the vector (functional) representation of time series (or

random process).
If R (s, t) is a correlation function on the set Т (s, t ∈  T), then H (R) is defined as the re-

producing kernel Hilbert space (RKHS) with the kernel R (s, t) [ 6 ]. This is a space of the
function on the set Т with the following properties:

1) all the functions Rt = R (t, .) belong to H (R);
2) scalar product of any f ∈  H (R) to function Rt = R (t, .) is the value of f at t:

( f, Rt )R = f (t) .

So the function Rt = R (t, .) defines the linear functional in H (R), giving the value in t.
Random process x (t) with correlation function R (s, t) has a canonical isomorphic repre-

sentation in the space H (R) with kernel R (s, t): random variable x (t) corresponds to the
function Rt = R (t, .), and random variable h ∈  H (x) (belonging to linear span of the random
process x (t)) corresponds to the function f ∈  H (R), such as

f (t) = ( h, x(t) )R = E h x(t).

In particular, for the discrete time series x1, …, xn  on the finite time interval [1�n] with
covariance matrix R (s, t), Hilbert space H (R) is n-dimensional vector space, containing all
the vectors of the form Rt = R (t, .), and the scalar product of a vector x ∈  H (R) to Rt = R (t, .)
is just t�component of x:

( x, Rt )R = xt .

Functional space H (R) is a convenient tool for investigating of the various properties of
random processes. An important advantage of RKHS representations over spectral ones is that
RKHS representations are applicable for both stationary and non-stationary processes, and are
also valid for generalized random processes (such as white noise or flicker noise). On the
other hand, for the stationary processes RKHS representations are directly related with the
spectral ones, so all the �spectral� results may be simply formulated in terms of RKHS. This
representation is also related with the canonical innovation representations by H.Wald and
H.Cramer for non-deterministic time series and random processes.

In particular, if x1, …, xn  is non-correlated time series (or random sample) with , then
RKHS is l2 -vector space with norm

║x║2 = Σ | xk |2.

That is numerically coincides with the formula of sample variance (with mean 0).
In the case of generalized white noise process, Hilbert space H (R) is just the space of

square-integrable functions L2 :
H (R)  = {g:  ║g║2 = ∫ │ g (t) │2 dt < ∞ }.

If x1, …, xn  is time series with non-correlated increments, the corresponding RKHS is
the vector space with norm

║ x ║2 = | x0 |2 + Σ | xk+1 - xk   |2

That is numerically coincides with the formula of Allan variance (with x0 = 0).
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Thus Allan variance σσσσ2
a is just a norm in RKHS, corresponding to time series with non-

correlated increments. So it seems expedient to call it also the increment or innovation vari-
ance for time series.

This fact to a certain extent elucidates the mathematical content of Allan variance as the
scatter or scale characteristic of time series. In particular, it explains the fact that Allan vari-
ance is so useful in the case of signals with non-correlated increments and 1/f type noise.

The mentioned relations of RKHS and spectral representations for the stationary proc-
esses provide the opportunities for further investigations of Allan variance properties for vari-
ous types of noise, including white, flicker noise and some others.

There is also relation of Allan variance with the innovation representations by H.Wald
and H.Cramer for non-deterministic time series or random processes, that should be men-
tioned.

5. Conclusion
Allan variance and sample variance are two distinct scatter or scale characteristic of

data, which are generated by different kinds of time series as basic models. In many cases
these estimates also correspond to different parameters.

Both characteristics are significant for practice, but they are useful in various cases.
Therefore it seems likely that it could sometimes be useful to apply them in common, or
choose one of these estimates as preferable one.

It seems helpful to investigate the interrelations of these estimates for wider range of the
practically significant models in order to reveal the fields of the combined use and the cases of
the preferable use for each estimate.
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