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Abstract 

   This paper presents a new approach for detection of artifacts in sleep electroencephalogram (EEG)  
recordings. The proposed approach is based on Kalman filter. The idea of this approach consist in  
embedding the AR model into the Kalman Filter which makes possible to use such KF AR (Kalman  
Filter AR) models for linear prediction of non-stationary signals. Such model can be set up to detect 
and follow discrete dynamic changes of the signal. For detection of the EEG artifacts we have 
exploited the evolution of the state noise - increase in state noise indicate the dynamic change of the 
signal. The evaluation of the results was done by the Receiver-Operator Characteristics (ROC) curves - 
in terms of the specificity and the sensitivity. For 90% of the specificity the best achieved value of the 
sensitivity using KF AR model was 33%. In order to achieve better results we have tried the following 
modification: instead of the Kalman Filter we have used extended Kalman Filter and instead of the AR 
model a neural network. The preliminary results look promissing: for 90% of the specificity we have 
achieved 65% of the sensitivity. 
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1. Introduction 
 
 Electroencephalography (EEG) is a medical technique that measures brain function by analysing the 
scalp electrical activity generated by the brain structure. Analysis of the EEG recordings is usually  
done by EEG experts, which must carefully inspect these recordings. However this process is  
generally very time-consuming, because of the vast amount of the data.  For this reason many different 
automated methods have been proposed to reduce the time needed for visual inspection.  
 One of the main problems in the automated EEG analysis is the detection of the different kinds of 
interference waveforms (artifacts) added to the EEG signal during the recording sessions [1]  
We can look at artifacts, as they are waves or group of waves that are  produced by technical or other 
disturbances, which are not due to brain activity. The most important reasons for occurrence of the 
artifacts are the movements of the patient during recording session and the normal electrical activity of 
the heart, muscles and eyes [1]. Recognition and elimination of the artifacts in EEG recordings is 
complicated task, but essential to the development of practical systems [2].  A valid artifacts 
processing strategy should on the one hand minimise the amount of data that have to be eliminated and 
on the other ensure that the obtained results are not  influenced by undetected artifacts [3]. In case of 
visual inspections the artifacts can be relatively easy detected by the EEG experts. However, during 
the automated analysis these signal patterns often cause serious misclassifications thus reducing the 
clinical usability of the automated analysing systems [1].The aim of this work is to detect such 
artifacts in sleep EEG recordings. 
 The paper is organized as follows. In Section 2 the method for detection of sleep EEG artifacts is 
described. Section 3 describes the achieved results in terms of the specificity and the sensitivity and 
Section 4 contains the comparison of these results and the results reported in [8]. Section 5 is devoted 
to conclusions and future work. 
 
2. Methods  
 
This Section describes the approaches that we have used for sleep EEG artifacts detection. The first  
subsection describes the original approach based on the Kalman Filter autoregressive (KF AR) model 
as defined in [4], where it is shown how such model can be set up to detect and follow  discrete 

 59



Measurement in Biomedicine ● M. Roháľová, P. Sykacek, M. Koska, G. Dorffner 
 

dynamic changes - and this was the main idea, which we have used for the EEG artifacts detection. 
The second subsection describes the modification of the original approach. 
 

2.1. KF AR model 
 
 The AR model is an acronym for the autoregressive model, which is a linear predictor used for  
modelling stationary time series [4]. The KF AR model is an acronym for the Kalman Filter AR 
model, which is defined by the following state-space equations according to [4]: 
 

   (1) ( )ttttt N Qww ,0~1 +=+ θθ

 ( ),,0~ 2
tttttt Nvvy σθ += H  (2) 

 

where t is a time index, θ  is a state vector of the system at time t - the components are the time-
varying  AR coefficients. y

t

t is a measurement at time t,  Ht  is a measurement matrix, where Ht  = [yt-1, 
yt-2, …, yt-p].  wt is a state noise and vt is a measurement noise.  Qt is a covariance matrix of wt  and σ  
is a variance of v

2
t

t. It is assumed that wt and vt are zero mean white noises and are independent of each 
other. 
 The aim of the KF is to estimate the state of the system from measurements, which contain random 
errors (for detailed description of the KF algorithm see [5]). The idea of the KF AR model is that by 
embedding the AR model into the KF it is possible to use such model for linear  prediction of 
nonstationary signals [4]. The state vector (vector of the AR coefficients) of such KF evolves in time 
and its evolution makes possible the continuous tracking of  a nonstationary signal. In [4] it is shown 
how can be the KF AR model sets up to detect and follow discrete dynamic changes. This can be  
achieved by updating the state noise (wt) on-line - increase in  the state noise allows the KF to jump to 
the next dynamic regime.  There are several methods for updating the state noise covariance matrix  Qt 
(and thus the state noise). In our experiments we have used the method, where it is assumed that the 
state covariance matrix Qt = qt I. Thus this method is based on updating the variable qt (for detailed 
description see [6]).  
 The evolution of the variable qt (or the state noise covariance matrix  Qt (and thus the state noise) 
was used for the detection of the  artifacts or in other words for marking the seconds as artifactual or 
clean - increase in state noise indicate the dynamic change of the signal. This marking was based on 
the selection of the proper value for the threshold in such a way, that every second containing qt larger 
than the threshold was marked as artifactual. Let us remark that the number of qt involved in one 
second equals to the number of samples recorded per one second. 
 
Table 1: Comparison of the results achieved with KF AR model, EKF NN model and of  the results 
reported in [8]. sens.  is the acronym for the sensitivity. 

 KF AR model EKF NN model 
 date set A data set B data set A1 data set A2 results [8] 

specificity sens. (std) sens. (std) sens. (std) sens. (std) sens. (std) 
90% 33% (9) 24% (11) 65% (7) 32% (13) 21% (-) 
95% 27% (8) 18% (7) 55% (8) 22% (11) 26% (-) 
99% 17% (7) 9% (3) 33% (12) 11% (7) 33%  (17) 

 
 

2.2. EKF NN model 
 
 This subsection briefly describes the modification of the original approach (see 2.1). In this 
modification we have used extended Kalman Filter (EKF)  instead of the Kalman Filter and the RBF 
NN (radial basis function neural network) instead of the AR model. 
 The EKF is extended version of the KF algorithm for non-linear systems. The essence of the EKF is 
simply to apply the KF on each time step to a linearized version of  the problem, where each 
linearization is performed about the most recent state estimate available [6]. For EKF NN model we 
have used the following state-space equations [6]: 
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   (3) ( )ttttt N Qww ,0~1 +=+ θθ

 ( ),,0~)( 2
tttttt Nvvy σθ += g  (4) 

 

where the state vector θ  =[centers, bias, weights] and gt t(⋅)  is a non-linear vector function of the state 
that is in this model represented by the RBF NN. For the detailed description of the EKF algorithm see 
[6]. 
 
3. Results 
 
 This Section describes the results of our approaches for EEG artifacts detection. For these 
experiments we have used two data sets: A and B, which were selected from different all-night 
recordings from the database of the project SIESTA [2]. The data set consists of the raw data - six 
EEG time series (recorded from  six electrodes). To each of these data sets we have had also the 
corresponding marker file, which contains an artifact marking of the EEG recording done by the EEG 
experts. An example of the EEG signal together with the EOG artifact can be seen in the Figure 1. 
 The evaluation of the results was done by the Receiver-Operator Characteristics (ROC) curves - in 
terms of the specificity and the sensitivity (see [7]). Because the correct classification of the EEG is 
clinically more important than the detection of all possible artifacts, the good result is the one for 
which the specificity is very near its maximal value (100%) and at the  same time for which the 
sensitivity is the higher the better (maximum = 100%). In this way we can also ensure that the minimal 
amount of the clean seconds will be lost. Thus we are interested in the specificity from 90% to 100%  
and for the corresponding values of the sensitivity. 
 The results of the approach based on KF AR model are summarized in  the Table 1, where the values 
of the sensitivity are the mean values over the electrodes and std is an acronym for standard deviation. 
The data set A is considered as a training set and data set B as a test set.  For the detailed description of 
these results see [7].   
   The preliminary results of the approach based on the EKF NN model are also depicted in the Table 
1. Here the 1st half of the data set A  (A1) was considered as a training set and the 2nd half (A2) as a 
test set. In this model we have used RBF NN with 5 inputs, 10 hidden  neurons and 1 output. The 
centers of the radial basis functions were initialised by the  k-means algorithm and the widths were all 
fixed and set to the mean distance between the centers. 

 

 
 

Figure 1: An example of the EEG signal together with the EOG artifact (gray color). 
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4. Discussion 
 
 In this Section we will compare our results with the results reported in [8] (the authors have also 
used the EEG data sets from the SIESTA database and have evaluated their results with the ROC 
analysis too.) - see the Table 1. It is easy to see that for both of our approaches the results achieved at 
the training set (A resp. A1) are better than the results achieved at the test set (B resp. A2). We can also 
notice that on both data sets the results achieved with the EKF NN model are better than the results 
achieved with the KF AR model. When we compare the results achieved with the KF AR model and 
the results in [8] we can see that for the specificity of 90% and 95% are the data set A results slightly 
better while for 99% are worse. Taking the data set B instead of  the data set A only the results for 
specificity of 90% are slightly better,  otherwise they are worse. Now we will compare the results of 
the EKF NN model  with the results in [8]. For the specificity of 90% and 95% are  the results at the 
data set A1 more better than in [8] and for 99% are the same. With the data set A2 is the situation  the 
same as with the data set B.  
 
5. Conclusions and Future Work 
 
 In this paper we have used the two approaches for sleep EEG artifacts detection. The first one is 
based on the KF AR model. And the second one is the modification of the previous approach, where 
instead of the AR model the RBF NN was used and instead of the KF the EKF was used. For marking 
the seconds of the EEG recordings as clean or artifactual we have exploited the evolution of the state 
noise (variable qt )- increase in the state noise indicate the dynamic change of the signal. In future we 
would like to more examine the EKF NN model in order to see if it is possible to obtain better results 
than the results achieved till now with this model.  
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