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Abstract

This paper presents results of a non-linear study of the human electroencephal ogram
to establish the feasibility of extracting non-stationary information associated with
internal or external events and stimuli. By invoking chaotic time series analysis
techniques, short-term predictions are made on the attractor. Comparisons with the
real evolution of the EEG could in principle yield stimulus-related information.

Introduction

Modern non-linear dynamic studies of different biosignals suggest [1]-[3], that in
many cases measured signals can show attributes more closely matched to a low-
dimensional chaotic attractor than that of random (infinite dimensional) noise. The
long-term evolution of chaos is not predictable since information at one time does not
correlate well with information at another distant time, despite the fact that the
dynamics may be perfectly deterministic. Prediction in the short-term, however, can
be quite accurate (up to a limit determined by the largest Lyapunov exponent). In an
effort to explore the feasibility of harnessing prediction to extract information, we
apply advanced techniques to test the concept on the EEG. We outline the algorithms
employed by way of example on a system whose dynamics are known and present the
results in the subsequent section.

Methods

To illustrate the theory we present a chaotic system which is a model of a Faraday
disk driven self-exciting homopolar dynamo occurring in magnetohydrodynamic
processes arising from a theory of the Earth’s magnetic field [6]. The equations are:

X=xX(y-1)-bzf (2)

y=al-x")-ky
z=xf(X)—mz (1)
where

f(X)=1-e+esx

The values a=20, b=2, k=1, m=1.2, s=1, e=0.1 exhibit chaos and e=1 demonstrates
asymptotic stability [7].

In studying many physical (deterministic) systems we do not have direct access to the
state variables determining its evolution in n-dimensional space. By analysing an
appropriate single channel of data we have access to what can be considered a 1-d
projection of the original space. By invoking the embedding theorem [4], we can
identify a space formally equivalent to the original made out of time delays of the
observed variables:

1={xnl,xn+1,1,x{n+7,]..} (2)
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where x[n] is the observed signal. Important technical questions arising in the
application of this procedure are the choice of the delays and the number of
coordinates required to accurately describe the dynamics.

Time Delay

In theory, if we have access to an infinite amount of infinitely accurate data any time
delay will suffice [5]. Typically, of course, we only have access to a finite amount of
data sampled at finite intervals. A good criterion in practice [5] is to take the first
minimum in average mutual information versus time delay defined by

_ 0 P(y[n], yin+1]) O
I(1) = P(y[n], log, 3
(1) y[n]w](y[n] yin+1])log BOm)Pn+ )0 3)

Application of equation 3 finds the first minimum for X of equations 1 at T=23T, where
T, is the sampling time.

Embedding Dimension

A dimension d>2da (where da is dimension of the attractor) is sufficient to always
unfold an attractor when dealing with time lagged coordinates [5]. In many
circumstances a smaller dimension d can be found. We use false nearest neighbours
[5], which is based upon the concept that a pair of near points constituting false
neighbours are close together as a result of projection on a dimension that is too small
to properly unfold the attractor. Projecting to larger embedding dimensions will
facilitate the elimination of false neighbours. The minimum dimension where all false
neighbours are eliminated is called the embedding dimension de. The difference in
distance R between nearest neighbours in dimension d+1 as compared to dimension d
can be written as

)}
RE (0] - Rj[n]g _|4n+dr]- gk +dr] “
H RN R,[N]

When this value is greater than a certain threshold, we consider the nearest neighbours

to be false neighbours. This method suggests a dimension of 3 for unfolding the
attractor for X in equations 1.

Prediction

If the source of a chaotic signal is stationary, the resulting attractor is invariant for any
initial condition. We can exploit this fact by generating a database of local maps
describing the flow from one neighbourhood to another (subject to the requirement
that the attractor has been sufficiently sampled). To predict forward in time, a newly
observed point’s nearest neighbour in the data is sought and the corresponding local
map is used to project it forward in time from that neighbourhood. This procedure can
be performed iteratively to produce predictions of K steps ahead. Of course a positive
largest Lyapunov exponent dictates that errors grow exponentially and ultimately
limit the prediction horizon. Given a vector Y on the attractor we write its local linear
map F as

Y[n+1]=F (Y[n]) = A +B.Y[n] Q)

Selecting N nearest neighbours of Y, we can calculate the coefficients A, and B, by a
least-squares method that minimises
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i\v”i[k - (A + BnY”i[k])\z

Figure la illustrates prediction for the system of equations 1, which is extremely
accurate up to a point where the predicted and actual points suddenly diverge. Fig 1b
demonstrates the correlation coefficient between predicted values and actual values at
the point where the two start to diverge.
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Fig 1a,b: Prediction and corresponding correlation coefficient plot

Results

Subjects were placed in a sitting position in a dimly lit, lead-shielded room. A single
channel of EEG was acquired. Ag/AgCl 10mm electrodes were placed on O,, and F,,
and the ground lead coupled to both ear lobes (this is the typical configuration used
for extracting visual evoked potentials). Data was sampled at a rate of 250Hz from an
amplifier with a gain of 50,000 and collected for a period of 3 minutes and low passed
filtered with a cutoff frequency at 40Hz. A fourth order FIR filter was used since IIR
filters can influence an effect on the measured nonlinear properties [5]. Referring to
figure 2a,b we see that a time lag of 10 is appropriate and an embedding dimension of
8 is sufficient. The largest Lyapunov exponent for this data was estimated to be 0.35.
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Fig 2a,b: Average mutual information and embedding dimension

To maximise prediction accuracy, we have found it wise to over-sample the data thus
facilitating accurate local maps to be generate. Over-sampling data can lead to
anomalies when calculating false nearest neighbours: Two successively sampled
points close in time will always manifest themselves as near neighbours thus changing
the global percentage of false nearest neighbours versus embedding dimension. To
circumvent this, we operate on a decimated version of the data when calculating the
false nearest neighbours above. Figure 3a,b illustrates some successful attempts at
prediction. The largest global Lyapunov exponent indicates a limit of predictability in
the long term but local prediction maybe better or worse than this [5].
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Fig 3a,b: Example of predictions

Discussion

We have attempted to predict measured brain electrical activity based on the
assumption that the activity can be modelled by a chaotic attractor. Similar
approaches could be made to other biosignals exhibiting chaotic attributes. If the
future behaviour of a signal is known, responses occurring as a result of stimuli
external to the system under study can be extracted. Although short term predictions
are dependent on local Lyapunov exponents, the assumption of stationarity, and low
measurement noise, the results are quite promising. In the context of the EEG, a well
sought after goal is to extract single-trial evoked or event-related potentials.
Unfortunately in this case, the amplitude ratio of the evoked potentials relative to the
background activity is too low [8] for our method to work, however the authors feel
hopeful that it could have some utility in studying other biosignals where the stimulus
response could be quite large.
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