MEASUREMENT SCIENCE REVIEW            Volume 23     

Main Page


No. 1

No. 2 No. 3 No. 4 No. 5 No. 6  

       Measurement of Physical Quantities



Turgut Özseven, Zübeyir Şükrü Özkorucu:

Optimization of Support Vector Machines for Prediction of Parkinson’s Disease


As in all fields, technological developments have started to be used in the field of medical diagnosis, and computer-aided diagnosis systems have started to assist physicians in their diagnosis. The success of computer-aided diagnosis methods depends on the method used; dataset, pre-processing, post-processing, etc. differ according to the processes. In this study, parameter optimization of support vector machines was performed with four different methods currently used in the literature to assist the physician in diagnosis. The success of each method was tested on two different Parkinson's datasets and the results were compared within themselves and with the literature. According to the results obtained, the highest accuracy rates vary depending on the dataset and optimization method. While Improved Chaotic Particle Swarm Optimization achieved high success in the first dataset, Bat Algorithm achieved higher success in the other dataset. While the successful results obtained are better than some studies in the literature, they are at a level that can compete with some studies.



Siquan Zhang:

Investigation of Flux Transfer along Ferrite Core of Probe Coil for Eddy Current Nondestructive Evaluation


A probe coil with a T-core above a layered conductor with surface hole is investigated for magnetic flux transfer along the ferrite core and enhancement of eddy currents in conductor. The cylindrical coordinate system is adopted and an artificial boundary is added to the solution domain with radius b, and the general formula for calculating the impedance of the T-core coil is derived using the truncated region eigenfunction expansion (TREE) method. For four special cases with different probe configurations, coil impedance changes due to the layered conductor and defect are calculated with Mathematica software over a frequency change ranging from 100 Hz to 20 kHz. The analytical results are in good agreement with those obtained by the finite element method and experimental measurements. The results show that under the same lift-off height and excitation frequency, the impedance change caused by the conductor or defect in the coil of long core column is greater than that of the short core column coil. It indicates that the probe coil with a long core column can transfer magnetic flux to the conductor, thereby enhancing eddy currents in the conductor.



Kiril Demerdziev, Vladimir Dimchev:

Reactive Power and Energy Instrument’s Performance in Non-Sinusoidal Conditions Regarding Different Power Theories


It is important to conduct the examination of reactive power and energy instruments in normal operating conditions, due to their place in the regulated trade of electrical energy. The challenge arises when the normal operating conditions encompass non-sinusoidal voltages and currents, for two main reasons: the fact that the term reactive power/energy is not unambiguously defined in case of harmonically polluted environment and the fact that the measurement algorithm implemented in the meter is usually not explicitly presented by the producer. Different algorithms provide the same result in case of sinusoidal signals, while in case of harmonics the instrument’s performance may vary significantly, when different power theories are adopted. In the paper, a commercially available reactive energy electricity meter is tested with harmonically distorted voltage and current signals, and an analysis of its output is performed from the perspective of the implemented measuring algorithm, which is not known a priori. The tests encompass alteration of different waveform parameters and the instrument’s output is analyzed from the perspective of several reactive power theories. The conclusion of the analysis results in the meter’s performance feature illustration in correlation with different harmonic parameters and different reference conditions.



Mehmet Eren, Ramazan Gürsel Hoşbaş:

Testing the Performance of the Video Camera to Monitor the Vertical Movements of the Structure via a Specially Designed Steel Beam Apparatus


This article focuses on a specially designed steel beam testing apparatus to determine the dynamics of the structure using data obtained from different sensor systems. The analysis of these different sensor systems is performed by processing data recorded by the Global Navigation Satellite System (GNSS), vision based measurement (video camera), and accelerometer surveys. To perform this analysis, the accelerometer and GNSS receiver are installed at the steel beam’s mid-span position. The high-contrast artificial target attached to the accelerometer is recorded by a video camera to monitor the structural dynamics. Steel beam experiments show that it is compatible with the accelerometer, which is predicted as a reference sensor in detecting motion with an amplitude of 10 mm and above in the vertical direction with GNSS and determining the structural frequency by spectral analysis. On the other hand, we concluded that the video camera can be used to determine the structural dynamics in SHM because its results were compatible with the reference data even if the amplitude was too small.



Hao Yang, Yufeng Lai, Xuanqi Liu, Houshi Jiang, Jiansheng Yang:

Equivalence Ratio Modelling of Premixed Propane Flame by Multiple Linear Regression Using Flame Color and Spatial Characteristics


Equivalence ratio (Φ) is one of the most important parameters in combustion diagnostics. In previous studies, flame color characteristics have been widely applied to model the Φ of premixed hydrocarbon flames. The flame spatial characteristics also change with the varying Φ. In this paper, a high-speed color camera was employed to capture the premixed propane flame images under different Φ conditions (Φ = 0.93 to 1.53). Then, the relationship between the spatial characteristics and the Φ variation was investigated. The area and height of propane premixed flames perform a strong sensitive response to the Φ variation. Based on the research above, the Φ measurement models were constructed using color and spatial characteristics. A comparison was made between the color characteristics (Color-Φ) model and the color-spatial characteristics (Multi-dimensional-Φ) model. Both models were applied to a set of color images of a premixed propane flame, and the result indicates that the Multi-dimensional-Φ model performs with higher accuracy.



Bing-yi Miao, Xian-cheng Wang, Jun-hua Chen, Chu-hua Jiang, Meng-yao Qu:

A Novel Non-Contact Measurement Method of Ball Screw Thread Profile Detection Based on Machine Vision


The transmission accuracy of the ball screw depends on the processing quality of the thread profile. Traditional detection method of thread profile is complicated and inefficient. When shooting the thread profile of the ball screw in the normal section, the camera axis must be tilted to the lead angle, and adjustment errors are easily introduced from both the front view and the top view. When shooting in the axial section, the spiral lines block each other, so the actual thread profile cannot be captured for detection. In order to solve the above problems, a thread profile detection method is proposed: the theoretical equation of the ball screw thread profile in the axial section is derived based on the theoretical thread profile in the normal section, and the theoretical equation of the thread profile projection curve in the axial section is solved based on helix analysis, and the differential equation between them is obtained; then, the theoretical correction value of the thread profile projection curve is obtained by Linear Search to find the boundary value; the actual thread profile in both axial section and normal section is finally obtained with the theoretical correction value, which can support accurate measurement and detection of the key parameters of the thread profile. Experiments show that the proposed method can effectively improve the accuracy of the ball screw thread profile detection.




No. 2  



Shumaila Ihtisham, Sadaf Manzoor, Alamgir Khalil, Sareer Badshah4,Muhammad Ijaz, Hadia Atta:

Modeling Extreme Values with Alpha Power Inverse Pareto Distribution


The study focuses on the development of a new probability distribution with applications to extreme values. The distribution is proposed by incorporating an additional parameter into the inverse Pareto distribution using the α-Power Transformation. Various properties of the new distribution are derived. The paper also explores the estimation of the parameters by the Maximum Likelihood Estimation (MLE) technique. Simulations are performed to evaluate the performance of the MLEs. In addition, two real data sets with extreme values are used to evaluate the efficacy of the proposed model. It is concluded that the proposed model performs well in the case of extreme values compared to the existing distributions.



Mikulas Bittera, Jozef Hallon, Imrich Szolik, Rene Hartansky:

Alternative Approach Leading to Reduction in Measurement Instrument Uncertainty of EMI Measurement


Even in the field of electromagnetic compatibility, low measurement uncertainty means high measurement quality. Although there are standardized procedures for obtaining the uncertainty of such a measurement, which facilitate uncertainty estimation, modern approaches show further reduction possibilities. The paper presents an alternative approach to reducing measurement instrument uncertainty in the case of electromagnetic interference measurement based on many years of our experience and a large number of measurements in this field. In the paper, two different methods of uncertainty reduction are described. The first method is based on a detailed analysis of the sources of uncertainty and the subsequent division of the analyzed frequency band into more subranges. Another method uses the choice of the antenna factor, which also contains information about the test site where the measurement is carried out. In this way, despite a lengthy analysis, it is relatively easy to achieve a measurement instrument uncertainty that is below the maximum measurement uncertainty given by the CISPR standard.



Meng-ting Xu, Hong-xi Wang, Ya-xiao Wang, Hui-hui Tian:

Design and Experimental Study of a Probe for Crankshaft Full-automatic Measuring Machine


The Crankshaft Full-automatic Measuring Machine (CFMM) features high accuracy, high efficiency and complete measurement parameters, and represents the forefront of a geometric crankshaft accuracy measuring instrument. One of its core technologies is the high-precision radial following the crankshaft connecting rod journal measurement. In this paper, an independent probe design scheme combining the flexible dual-complex parallel four-bar guide mechanism and double displacement sensors based on the contact measurement method was proposed. It was suitable for the measurement of precision parts with eccentric characteristics such as crankshaft and camshaft measurement. Taking the spring as the flexible part, the probe prototype's optimization design, processing and assembly were completed, the test device was built, and the system accuracy was calibrated under various positions and feed quantities of the probe. The results revealed that the expanded measurement uncertainty after double-sensor compensation was enhanced from 1.53 μm in single-sensor measurement to 0.44 μm, satisfying the high-precision requirements of engineering measurement accuracy and reducing the measurement cost.



Liping Tian, Lingbin Shen, Yanhua Xue, Lin Chen, Ping Chen, Jinshou Tian, Wei Zhao:

3-D Imaging Lidar Based on Miniaturized Streak Tube


Streak Tube Imaging Lidar (STIL), with advantages of non-scanning working mode, small distortion, high image framing rate, high resolution in low contrast environment, compact structure, easy miniaturization and high reliability, has a wide range of applications in military, aerospace, space confrontation, attack and defense, and marine law enforcement. This article introduces the principle of single-slit and multi-slit streak tube imaging lidar. It also introduces a single-slit general streak camera that can be used for imaging lidar. In addition, a multi-slit miniaturized streak tube with a single-lens focusing system with a total length of about 200 mm has been designed. The results of the 3D electromagnetic simulation show that the effective photocathode area of this streak tube reaches 36 mm × 36 mm, the temporal resolution is better than 50 ps, the dynamic spatial resolution can reach 12 lp/mm, and the whole photocathode can accommodate at least 19 slits in the effective detection range. The streak tube has a meshless structure, which is highly reliable. The streak tube can be used to increase the field of view of the imaging lidar system, improve the reliability, and achieve system miniaturization.



Khairun Nisa’ Minhad, Araf Farayez, Mamun Bin Ibne Reaz, Mohammad Arif Sobhan Bhuiyan, Siti Balqis Samdin, Mahdi H. Miraz:

Early Diagnosis of Dementia Patients by SPADE Activity Prediction Algorithm


Dementia is not a specific disease, but a general term for age-related decline or loss of memory, cognitive abilities including problem solving and decision-making, and one’s own language, which significantly interfere with daily life. Researchers around the world have developed ways to automate the diagnosis of dementia through the use of machine learning and data mining approaches. The aim of this research project is to design and develop a day-to-day activity prediction algorithm in order to accurately identify and differentiate the dementia affected patients from the healthy subjects, to ensure early diagnosis of dementia development. This research advocates a novel algorithm called ‘Sequence Prediction via All Discoverable Episodes (SPADE)’ as a statistical tool to map activities of daily life (ADLs) in different groups of people in order to develop a unique parameter for precise diagnosis. The results of our experiment demonstrated a significant difference (i.e. 11 %) in the sequence prediction peak accuracy between the healthy subjects and the residents with dementia.

SPADE demonstrated an adequate accuracy (i.e. 80 % on average), with an improvement of about 12 % compared to the performance of M-SPEED in inferring future occurrences of activities. It is thus evident that the algorithms for activity predictions show promise for early detection of dementia symptoms without the use of any expensive clinical procedure.



L. Nurel Özdinç Polat, Şükrü Özen:

Evaluation of Physiological Effect of Audiological Test based on Galvanic Skin Response


The aim of this study was to determine the physiological effects of the audiological test procedure on individuals and the changes in Galvanic Skin Response (GSR). GSR data from 39 volunteers at rest and during the audiological testing were analyzed and the effects of the audiological testing procedure were evaluated. It was observed that the audiological test showed significant differences according to the resting status in terms of mean value, mean power, Root Mean Square (RMS), Kurtosis, and Skewness. The results obtained in the study show that these differences in GSR can be evaluated according to the physiological effect reflections of the emotional changes created on individuals by the audiological test.




No. 3  


No. 4  


No. 5  


No. 6  









 No. 1    No. 2    No. 3   No. 4   No. 5  No. 6

Journal is open for your papers


 Download and print the front cover